Как устроен и как работает двигатель внутреннего сгорания?

Содержание:

Как работает двигатель внутреннего сгорания

Чтобы разобраться, как функционирует бензиновый или дизельный мотор, лучше всего рассмотреть одноцилиндровую модель этого механизма, обладающую самой простой конструкцией.

Элементы и термины

Основными узлами двигателя являются цилиндр и расположенный в нем поршень, который перемещаются вверх и вниз. Крайнее верхнее положение поршня определяют как верхняя мертвая точка, сокращенно ВМТ, а крайнее нижнее положение называют крайней нижней мертвой точкой, или НМТ. Линейное расстояние между этими двумя точками называют ходом поршня. В работе мотора участвуют и  другие необходимые элементы, а процессы описываются такими терминами:

  1. Камера сгорания, по другому называется камера сжатия – это пространство, расположенное между головкой цилиндра и расположенным в цилиндре поршнем, когда он располагается в ВМТ. Именно здесь возгорается топливо.
  2. Рабочий объем цилиндра – объем в середине цилиндра между ВМТ и НМТ. Тогда, объем у многоцилиндрового двигателя – суммарный рабочий объем всех цилиндров, входящих в его состав, он указывается в технической документации. В автомобилях чаще всего встречаются 4-х цилиндровые двигатели, но бывают 6, 8 и 12-цилидровые ДВС. От объема напрямую зависит мощность мотора.
  3. Степень сжатия – это соотношение рабочего объема мотора и объема камеры сгорания.
  4. Такт двигателя – это периодический процесс, происходящий в двигателе за один ход поршня. Большинство двигателей – четырехтактные, то есть работают по 4 разным тактам.

 

Рабочий цикл у стандартного четырехтактного бензинового ДВС

Работа четырехтактного мотора подразделяется на 4 такта, во время которых происходят такие процессы:

1. Впуск

Поршень движется по цилиндру до НМТ, создавая разрежение. В этот момент в цилиндр проникает топливно-воздушная смесь.

2. Сжатие

Поршень движется до ВМТ, при этом клапаны перекрыты, за счет чего в камере сгорания увеличивается давление, а топливно-воздушная смесь нагревается и молекулы кислорода больше контактируют с молекулами топлива. В конце этого такта смесь воспламеняется, для чего в бензиновом двигателе предусмотрена свеча зажигания.

3. Расширение

Топливно-воздушная смесь загорается и нагревается, при этом она расширяется при закрытых клапанах, и обеспечивает рабочий ход поршня до НМТ. В результате полезная энергия вращает коленчатый вал, переходя из тепловой в механическую.

4. Выпуск

Поршень переходит из НМТ в ВМТ, выпускной клапан открывается, и отработанные газы идут в выпускной коллектор, а через него попадают в атмосферу.

Все такты  повторяются непрерывно, тем самым обеспечивая работу мотора и постоянное вращение коленчатого вала. 

Общая схема работы четырехтактного дизеля схожа с бензиновым ДВС, но имеются и некоторые отличия. В первом такте в цилиндр заходит чистый воздух, во втором – этот воздух сжимается, в результате чего в камере сгорания достигается температура более 600 °С и только в конце данного такта в цилиндр поступает топливо, которое воспламеняется в очень горячем воздухе. Третий и четвертый такты происходят так же, как у бензинового ДВС. Именно поэтому в дизеле не используются электрические свечи зажигания.

Классификация двигателей

Конструкция ДВС бывает различной. Каждый разработчик мотора пытается внести свои улучшения, повысить мощность и экономичность, снизить выбросы вредных веществ и стоимость агрегата. Давайте посмотрим, по каким критериям классифицируют двигатели внутреннего сгорания.

По рабочему циклу

Рабочий цикл ДВС — это последовательность процессов внутри каждого цилиндра, в результате которой энергия топлива превращается в механическую энергию. Цикл может быть двухтактным или четырехтактным:

  • четырёхтактный мотор работает по «циклу Отто» или Аткинсона и включает в себя такты: впуск, сжатие, рабочий ход и выпуск;
  • в двухтактном ДВС впуск и сжатие происходят одновременно за один такт, а рабочий ход переходит в выпуск на втором такте.

По типу конструкции

По конструкции ДВС делятся на:

  • поршневые, в которых расширяющиеся при сгорании газы приводят в движение поршень, который в свою очередь толкает коленвал;
  • роторные.Растущее давление газов воздействует на ротор, соединённый с корпусом через зубчатую передачу. Роторный мотор не имеет ГРМ. Его функции выполняют впускные и выпускные окна в боковых стенках корпуса;
  • газовые турбины. В этих двигателях внутреннего сгорания газы с высокой скоростью попадают на лопатки силовой турбины, которая соединяется через редуктор с трансмиссией. Для нагнетания воздуха в мотор установлен турбинный компрессор.

Моторы могут быть без наддува, с турбокомпрессором или нагнетателем. Конструкция подбирается под назначение двигателя: будь то стационарная установка или транспорт.

По количеству цилиндров

Одно цилиндровые двигатели работают неравномерно, что не критично для лодочных моторов, мопедов и мотоциклов. Двигатель автомобиля устроен сложнее, поскольку нужна высокая мощность, а значит и большой объём цилиндра. Так, в транспорте малого класса применяются 4-цилиндровые моторы. В грузовые автомобили ставят 6- и 8-цилиндровые ДВС.

По принципу создания рабочей смеси

Принцип работы двигателя внутреннего сгорания различается способами смесеобразования:

  • внешнее: в карбюраторных моторах и в агрегатах с впрыском топлива во впускной коллектор;
  • внутреннее: в дизельных двигателях и бензиновых с непосредственным впрыском в камеру сгорания.

По расположению цилиндров

Поршневые двигатели автомобиля различаются компоновочной схемой блока цилиндров и могут представлять собой конструкцию:

  • рядную;
  • V-образную;
  • оппозитную с углом развала между поршнями 180°;
  • VR-образную;
  • W -образную.

В зависимости от компоновки моторы устанавливаются в подкапотное пространство вертикально, горизонтально или под углом к вертикальной плоскости для уменьшения высоты конструкции.

По типу топлива

Работа двигателя внутреннего сгорания происходит за счёт сжигания смеси воздуха с бензином, газа или дизеля. В качестве газового топлива ДВС применяются углеводород, сжиженный газ, смесь пропана и бутана, метан, водород.

По принципу работы ГРМ

Выше мы рассматривали, что ГРМ может быть устроен по схеме OHV, ОНС или DОНС. Выбор компоновки влияет на принцип работы двигателя. Также приводы клапанов различаются способами регулировки тепловых зазоров, которые увеличиваются в результате нагрева конструкции. Настройку зазоров проводят вручную, меняя специальные винты в коромыслах, или устанавливают гидрокомпенсаторы для автоматической регулировки.

https://youtube.com/watch?v=AA81dQadz4A

Двигатель V-типа (V-образный силовой агрегат)

 

V-образный двигатель разделяет все цилиндры на две группы друг напротив друга под определенным углом. В итоге мотор образует плоскость под углом. Если посмотреть на этот тип двигателя со стороны, то он будет иметь V-образную форму. V-образные двигатели имеют небольшую высоту и длину. Этот тип моторов удобнее размещать в автомобиле по сравнению с обычными рядными моторами, которые по своим размерам гораздо больше. 

В настоящее время во многих автомобилях среднего и люкс-класса используются V-образные двигатели. Чаще всего это 6-цилиндровые силовые агрегаты. Например, такие двигатели стоят на Volkswagen Passat, Audi A6 и Mercedes E-класса AMG. 

Главная классификация ДВС

Все существующие ДВС разделены на 3 вида:

  • поршневые;
  • роторные;
  • газотурбинные.

В поршневых агрегатах рабочим органом является поршень. В роторных моторах используется движение ротора. В газотурбинных двигателях движение осуществляется турбиной.

В каждом из видов этих силовых установок конструктивно реализованы разные схемы преобразования тепловой энергии в полезную работу. Это принципиально отличает их друг от друга. Максимальная производительность силовых агрегатов зависит от того, каким образом преобразуется тепловая энергия. Каждый вид силовых агрегатов создан для эффективной работы в своей области применения.

Ниже подробно описаны конструкции этих агрегатов и физические процессы, происходящие в них. Отдельный раздел статьи посвящён двигателю Стирлинга. Он относится к механизмам с внешней камерой сгорания. Но принцип работы этого мотора по нескольким признакам похож на ДВС. Это часто вызывает путаницу.

Газотурбинный двигатель

Топливная смесь сгорает, и нагретый газ моментально расширяется, заставляя лопасти турбины вращаться.

Разработано два типа газотурбинных установок, отличающихся количеством рабочих валов. Агрегаты с двумя валами мощнее по сравнению с одновальными механизмами.

Газотурбинные двигатели устанавливают на машины, где необходима большая мощность силовой установки. Например, грузовые автомобили, корабли, самолёты и железнодорожные локомотивы.

Видео: Принцип работы газотурбинного двигателя

Роторный ДВС

Достоинством роторного ДВС является отсутствие шатунов, коленчатого вала и многих сопутствующих узлов. Инженеры подсчитали, что деталей в агрегате роторного типа намного меньше, чем в моторах других типов. Поэтому роторные моторы гораздо меньше других. Это является ещё одним их преимуществом.

В Японии, известной своими передовыми разработками в автомобилестроении, были сконструированы двигатели, имеющие несколько роторов. Например, японцы сконструировали агрегат, имеющий такую же мощность, что и шестипоршневой двигатель гоночного автомобиля. Но размеры многороторного движка при этом гораздо меньше.

На ранних моделях вазовских автомобилей в своё время устанавливались роторные моторы.

Роторные двигатели гораздо проще и эффективнее поршневых.  Но по непонятной причине роторные агрегаты используются очень редко.

Видео: Принцип работы роторного двигателя

Поршневой двигатель

В конструкции мотора этого вида имеется несколько цилиндров, внутри каждого из них поршни совершают возвратно-поступательные движения. В обоих концах цилиндров расположены клапаны. Открываясь, клапан пропускает порцию топливной смеси в камеру сгорания, образующуюся в цилиндре перед поршнем. В это время поршень, двигаясь вверх, сжимает смесь. В расчётный момент происходит её воспламенение.  Образующиеся газы расширяются и толкают поршень в другую сторону. Несколько таких поршней закреплены на валу П-образной конструкции. Обычно такой вал называют коленчатым. За каждое движение поршня вал проворачивается на определённую величину. Цикл движения поршня от одной стороны цилиндра до другой называется тактом. Скоординированная работа поршней заставляет коленчатый вал проворачиваться на полный оборот. Такие циклы постоянно повторяются, заставляя вращаться вал с большой скоростью.

Автомобилестроители постоянно совершенствуют поршневые двигатели. Каждое усовершенствование приводит к повышению мощности двигателя. Поршневые агрегаты являются самыми надёжными из всех видов силовых установок.

Видео: Принцип работы дизельного двигателя

Производители электродвигателей

Российские производители электродвигателей

Регион Производитель Асинхронный двигатель Синхронный двигатель УД КДПТ
СДОВ СДПМ, серво СРД, СГД Шаговый
Краснодарский край Армавирский электротехнический завод
Свердловская область Баранчинский электромеханический завод
Владимир Владимирский электромоторный завод
Санкт-Петербург ВНИТИ ЭМ
Москва ЗВИМосковский электромеханический завод имени Владимира Ильича
Пермь ИОЛЛА
Республика Марий Эл Красногорский завод «Электродвигатель»
Воронеж МЭЛ
Новочеркасск Новочеркасский электровозостроительный завод
Санкт-Петербург НПО «Электрические машины»
Томская область НПО Сибэлектромотор
Новосибирск НПО Элсиб
Удмуртская республика Сарапульский электрогенераторный завод
Киров Электромашиностроительный завод Лепсе
Санкт-Петербург Ленинградский электромашиностроительный завод
Псков Псковский электромашиностроительный завод
Ярославль Ярославский электромашиностроительный завод

Аббревиатура:

  • АДКР —
  • АДФР —
  • СДОВ — синхронный двигатель с обмоткой возбуждения
  • СДПМ — синхронный двигатель с постоянными магнитами
  • СРД — синхронный реактивный двигатель
  • СГД — синхронный гистерезисный двигатель
  • УД — универсальный двигатель
  • КДПТ — коллекторный двигатель постоянного тока
  • КДПТ ОВ —
  • КДПТ ПМ —

Производители электродвигателей ближнего зарубежья

Страна Производитель Асинхронный двигатель Синхронный двигатель УД КДПТ
СДОВ СДПМ, серво СРД, СГД Шаговый
Беларусь Могилевский завод «Электродвигатель»
Беларусь Полесьеэлектромаш
Украина Харьковский электротехнический завод «Укрэлектромаш»
Молдова Электромаш
Украина Электромашина
Украина Электромотор
Украина Электротяжмаш

Производители электродвигателей дальнего зарубежья

Страна Производитель Асинхронный двигатель Синхронный двигатель УД КДПТ
СДОВ СДПМ, серво СРД, СГД Шаговый
Швейцария ABB Limited
США Allied Motion Technologies Inc.
США Ametek Inc.
США Anaheim automation
США Arc System Inc.
Германия Baumueller
Словения Domel
США Emerson Electric Corporation
США General Electric
США Johnson Electric Holdings Limited
Германия Liebherr
Швейцария Maxon motor
Япония Nidec Corporation
Германия Nord
США Regal Beloit Corporation
Германия Rexroth Bosch Group
Германия Siemens AG
Бразилия WEG

ГОСТ 27471-87 Машины электрические вращающиеся. Термины и определения.
И.В.Савельев. Курс общей физики, том I. Механика, колебания и волны, молекулярная физика.-М.:Наука, 1970.
ГОСТ 29322-92 (МЭК 38-83) Стандартные напряжения.
ГОСТ 16264.0-85 Электродвигатели малой мощности
А.И.Вольдек, В.В.Попов. Электрические машины. Машины переменного тока: Учебник для вузов.- СПб.: Питер, 2007.
Paul Waide, Conrad U. Brunner. Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems. International Energy Agency Working Paper, Energy Efficiency Series.: Paris, 2011.
Dr. J. Merwerth. The hybrid-synchronous machine of the new BMW i3 & i8 challenges with electric traction drives for vehicles. BMW Group, Workshop University Lund: Lund, 2014.

Немецкие модификации первых ДВС

В 1876 году исследованиями стали заниматься немецкие ученые. Многие из их имен по сей день считаются весьма известными в автомобильной индустрии. Первым стоит назвать Николаса Отто. Благодаря этому исследователю появился легендарный «цикл Отто». Этот ученый первым придумал и создал двигатель, который работал на четырех цилиндрах. После чего уже в 1877 году исследователь получил патент на новое устройство. Этот двигатель по сей день лежит в основе множества современных моторов.

Еще одним известным ученым, который внес значительный вклад в развитие ДВС, стал Готлиб Даймлер. В сотрудничестве с Вильгельмом Майбахом он придумал мотор, который работал на основе газа.

В 1886 году ученые создали первый автомобиль, который работал на ДВС. Устройство получило название Reitwagen. До того момента движок ставили на двухколесный транспорт. Майбах придумал первый карбюратор с жиклерами, который тоже использовался довольно длительное время.

Чтобы создать эффективный ДВС, инженерам пришлось объединить свои усилия. В результате сформировалась группа ученых, в которую вошли Майбах, Отто и Даймлер. Они смогли собирать по 2 мотора в день. По тем временем это был отличный показатель.

Однако спустя некоторое время позиции исследователей в совершенствовании устройств разошлись. В результате Даймлер покинул команду для основания собственной компании. Майбах последовал за своим другом.

Не менее известным немецким ученым стал Карл Бенц. Первый ДВС он создал в 1886 году. К тому моменту у ученого уже была своя компания Benz & Company.

Двухтактный мотор

Но очистка и заполнение цилиндров топливной смесью происходит за очень короткое время в момент нахождения поршня в самом нижнем положении.

Для осуществления продувки внутренняя полость цилиндра напрямую связана с КШМ. По сути, поршень двигается в одном пространстве с кривошипом. Под ним образуется полость, которую называют кривошипной камерой или картером. Эта камера тоже участвует в процессах газообмена. В ней периодически создаётся разрежение. Это позволяет поступать новой порции смеси через впускное отверстие.

Такая конструкция позволяет двигателю развивать в 1,5 раза большую мощность по сравнению с другими моторами аналогичного объёма при тех же оборотах двигателя. Но есть и ряд недостатков.

  • Детали в таком двигателе работают с большей интенсивностью, то есть быстрее изнашиваются.
  • Особое значение придаётся герметизации всех механизмов, работающих практически в одном пространстве: поршня, цилиндра и кривошипа.
  • Так как в картере нельзя устроить масляную ванну, то смазку поршня и других деталей осуществляют добавлением масла в топливо.
  • Перепады давления смеси в цилиндре не так велики, поэтому для повышения производительности двигателя часто используют принудительную продувку.

Рабочий цикл осуществляется в течение одного оборота коленвала.

Видео: Принцип работы двухтактного двигателя

Вам также будет интересно почитать:

Атермальные стёкла для автомобиля

Недорогой и надёжный автомобиль Шкода Фабия 6Y

Иммобилайзер: что это такое в машине

Стоит ли покупать Honda CR-V 2019 года? Вот некоторые причины за и против

Chevrolet Orlando — американский вызов конкурентам

БелАЗ-75710 — самый крупный самосвал в мире

5 советов по продлению срока службы аккумулятора автомобиля

Kia Rio 2020 года в новом кузове

Поршневой двигатель

В чем преимущество такого механизма? Что дал новый принцип работы двигателя внутреннего сгорания? В настоящее время им оборудуются не только автомобили, но и сельскохозяйственный и погрузочный транспорт, локомотивы поездов, мотоциклы, мопеды, скутера. Двигатели такого типа устанавливаются на военной технике: танках, бронетранспортерах, вертолетах, катерах. Еще можно вспомнить о бензопилах, косилках, мотопомпах, генераторных подстанциях и другом мобильном оборудовании, в котором используется для работы дизельное топливо, бензин или газовая смесь.

До изобретения принципа внутреннего сгорания топливо, чаще твердое (уголь, дрова), сжигалось в отдельной камере. Для этого применялся котел, который грел воду. В качестве первоисточника движущей силы использовался пар. Такие механизмы были массивными и габаритными. Ими оборудовались локомотивы паровозов и теплоходы. Изобретение двигателя внутреннего сгорания дало возможность в разы уменьшить габариты механизмов.

Основные параметры электродвигателя

Момент электродвигателя

Вращающий момент (синонимы: вращательный момент, крутящий момент, момент силы) — векторная физическая величина, равная произведению радиус вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы.

,

  • где M – вращающий момент, Нм,
  • F – сила, Н,
  • r – радиус-вектор, м

Справка: Номинальный вращающий момент Мном, Нм, определяют по формуле

,

  • где Pном – номинальная мощность двигателя, Вт,
  • nном — номинальная частота вращения, мин-1

Начальный пусковой момент — момент электродвигателя при пуске.

Справка: В английской системе мер сила измеряется в унция-сила (oz, ozf, ounce-force) или фунт-сила (lb, lbf, pound-force)

1 oz = 1/16 lb = 0,2780139 N (Н)1 lb = 4,448222 N (Н)

момент измеряется в унция-сила на дюйм (oz∙in) или фунт-сила на дюйм (lb∙in)

1 oz∙in = 0,007062 Nm (Нм)1 lb∙in = 0,112985 Nm (Нм)

Мощность электродвигателя

Мощность электродвигателя — это полезная механическая мощность на валу электродвигателя.

Мощность электродвигателя постоянного тока

Механическая мощность

Мощность — физическая величина, показывающая какую работу механизм совершает в единицу времени.

,

  • где P – мощность, Вт,
  • A – работа, Дж,
  • t — время, с

Работа — скалярная физическая величина, равная произведению проекции силы на направление F и пути s, проходимого точкой приложения силы .

,

где s – расстояние, м

Для вращательного движения

,

где – угол, рад,

,

где – углавая скорость, рад/с,

Таким образом можно вычислить значение механической мощности на валу вращающегося электродвигателя

Справка: Номинальное значение — значение параметра электротехнического изделия (устройства), указанное изготовителем, при котором оно должно работать, являющееся исходным для отсчета отклонений.

Коэффициент полезного действия электродвигателя

Коэффициент полезного действия (КПД) электродвигателя — характеристика эффективности машины в отношении преобразования электрической энергии в механическую.

,

  • где – коэффициент полезного действия электродвигателя,
  • P1 — подведенная мощность (электрическая), Вт,
  • P2 — полезная мощность (), Вт
  • При этом

потери в электродвигатели обусловлены:
электрическими потерями — в виде тепла в результате нагрева проводников с током;
магнитными потерями — потери на перемагничивание сердечника: потери на вихревые токи, на гистерезис и на магнитное последействие;
механическими потерями — потери на трение в подшипниках, на вентиляцию, на щетках (при их наличии);
дополнительными потерями — потери вызванные высшими гармониками магнитных полей, возникающих из-за зубчатого строения статора, ротора и наличия высших гармоник магнитодвижущей силы обмоток.

КПД электродвигателя может варьироваться от 10 до 99% в зависимости от типа и конструкции.

Международная электротехническая комиссия (International Electrotechnical Commission) определяет требования к эффективности электродвигателей. Согласно стандарту IEC 60034-31:2010 определено четыре класса эффективности для синхронных и асинхронных электродвигателей: IE1, IE2, IE3 и IE4.

где n — частота вращения электродвигателя, об/мин

Момент инерции ротора

Момент инерции — скалярная физическая величина, являющаяся мерой инертности тела во вращательном движении вокруг оси, равна сумме произведений масс материальных точек на квадраты их расстояний от оси

,

  • где J – момент инерции, кг∙м2,
  • m — масса, кг

Справка: В английской системе мер момент инерции измеряется в унция-сила-дюйм (oz∙in∙s2)

1 oz∙in∙s2 = 0,007062 kg∙m2 (кг∙м2)

Момент инерции связан с моментом силы следующим соотношением

,

где – угловое ускорение, с-2

,

Справка: Определение момента инерции вращающейся части электродвигателя описано в ГОСТ 11828-86

Номинальное напряжение

Номинальное напряжение (англ. rated voltage) — напряжение на которое спроектирована сеть или оборудование и к которому относят их рабочие характеристики .

Электрическая постоянная времени

Электрическая постоянная времени — это время, отсчитываемое с момента подачи постоянного напряжения на электродвигатель, за которое ток достигает уровня в 63,21% (1-1/e) от своего конечного значения.

,

где – постоянная времени, с

Механическая характеристика двигателя представляет собой графически выраженную зависимость частоты вращения вала от электромагнитного момента при неизменном напряжении питания.

Методы борьбы с вредными воздействиями тепловых двигателей на окружающую среду

Один из способов уменьшения путей загрязнения окружающей среды связан с использованием в автомобилях вместо карбюраторных бензиновых двигателей дизелей, в топливо которых не добавляют соединения свинца.
Перспективными являются разработки автомобилей, в которых вместо бензиновых двигателей применяются электродвигатели или двигатели, использующие в качестве топлива водород.
Другой способ заключается в увеличении КПД тепловых двигателей. В Институте нефтехимического синтеза им. А. В. Топчиева РАН разработаны новейшие технологии превращения углекислого газа в метанол (метиловый спирт) и диметиловый эфир, увеличивающие в 2–3 раза производительность аппаратов при значительном уменьшении электроэнергии. Здесь был создан реактор нового типа, в котором производительность увеличена в 2–3 раза.
Введение этих технологий снизит накопление углекислого газа в атмосфере и поможет не только создать альтернативное сырьё для синтеза многих органических соединений, основой для которых сегодня служит нефть, но и решить упомянутые выше экологические проблемы.

📌Циклы двигателя

Под циклом подразумеваются действия, которые повторяются в отдельном цилиндре. Четырехтактный мотор оснащается механизмом, который обеспечивает срабатывание каждого из этих циклов.

В ДВС поршень выполняет возвратно-поступательные движения (вверх/вниз) по цилиндру. Шатун и кривошип, закрепленный на нем, преобразует эту энергию во вращение. Во время одного действия – когда поршень доходит от нижней точки до верхней и обратно – коленчатый вал делает один оборот вокруг своей оси.

Чтобы этот процесс происходил постоянно, в цилиндр должна поступать воздушно-топливная смесь, она должна в нем сжиматься и воспламеняться, а также должны удаляться продукты горения. Каждый из этих процессов происходит за один оборот коленвала. Эти действия называются тактами. Всего в четырехтактнике их четыре:

  1. Впуск или всасывание. На этом такте в полость цилиндра всасывается воздушно-топливная смесь. Она поступает через открытый впускной клапан. В зависимости от типа топливной системы бензин смешивается с воздухом во впускном коллекторе или непосредственно в цилиндре, как, например, у дизелей;
  2. Сжатие. В этот момент как впускной, так и выпускной клапаны закрыты. Поршень идет вверх благодаря провороту коленвала, а он вращается за счет выполнения других тактов в смежных цилиндрах. В бензиновом моторе ВТС сжимается до нескольких атмосфер (10-11), а в дизеле – более 20атм.;
  3. Рабочий ход. В момент, когда поршень остановится в самом верху, сжатая смесь зажигается при помощи искры от свечи зажигания. В дизельном агрегате этот процесс несколько отличается. В нем воздух так сильно сжимается, что его температура подскакивает до значения, при котором солярка загорается самостоятельно. Как только происходит взрыв смеси топлива и воздуха, высвободившейся энергии некуда деваться, и она перемещает поршень вниз;
  4. Выпуск продуктов горения. Чтобы камера наполнилась свежей порцией горючей смеси, газы, образовавшиеся в результате воспламенения, необходимо удалить. Это происходит в следующем такте, когда поршень идет вверх. В этот момент открывается выпускной клапан. При достижении поршнем верхней мертвой точки цикл (или совокупность тактов) в отдельном цилиндре замыкается, и процесс повторяется.

Двухконтурные реактивные

Реактивный двигатель самолета этого типа — двухконтурный турбореактивный появился на свет из-за того, что людям требовалось создать устройство, которое бы имело повышенный тяговый коэффициент полезного действия. Добиться повышения этого показателя необходимо было на огромных дозвуковых скоростях. Принцип работы этого устройства выглядит примерно так.

На двигатель набегает воздушный поток, далее он попадает в воздухозаборник, где разделяется на несколько частей. Одна часть проходит через устройство высокого давления, расположенного в первом контуре. Вторая же часть забранного воздуха проходит через лопатки вентилятора во втором контуре. Тут стоит отметить, что принцип построения первого контура в двигателе ТРДД аналогичен тому, что использовался в контуре его предшественника ТРД, а потому и работает он соответственно. А вот действие вентилятора, расположенного во втором контуре движка, аналогично тому, как функционирует многолопастный воздушный винт, который вращается в кольцевом канале.

Можно добавить, что использовать двигатель ТРДД можно и на сверхзвуковых скоростях, но для этого необходимо предусмотреть наличие системы сжигания топлива в его втором контуре, чтобы повысить тягу устройства.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *