Зарядное устройство для автомобильного аккумулятора своими руками: пошаговое руководство изготовления устройства в домашних условиях, подбор материалов для сборки конструкции

Содержание:

Как работает АКБ

Свинцовые АКБ заряжают током, равным току их 10-часового разряда: 6 А для АКБ на 60 А/ч, 9 А для 90 А/ч, 12 А для 120 А/ч. Больший ток вызовет перегрев и, возможно, вскипание электролита, отчего ресурс батареи резко снижается вплоть до полной негодности. Меньший зарядный ток ресурс АКБ практически не увеличивает, но удлиняет время заряда.

Зарядный ток в АКБ течет обратно рабочему. Важнейшее условие при этом – напряжение на АКБ не должно превысить 2,7 В на банку (8,1 В для 6 В АКБ, 16,2 В для 12 В АКБ, 27 В для 24 В АКБ), иначе начнется химическое разложение электролита, пластин, и АКБ закипит даже при небольшом зарядном токе. Чтобы полностью исключить закипание, допустимое напряжение заряда ограничивают 2,6 В на банку (7,8 В, 15,6 В, 26 В соотв.); при этом недозаряд по энергии составит менее 5% и усиления сульфатации не будет.

Если отключить полностью заряженную АКБ от ЗУ, дать ей остыть и померить напряжение без нагрузки, увидим 2,4 В на банку (6,8 В, 14,4 В, 24 В). В работе при разряде напряжение АКБ плавно падает до 1,8 В на банку (5,4 В, 10,8 В, 21,6 В), после чего батарея считается полностью разряженной. На самом деле в ней остается ок. 25% «закачанной» при заряде энергии, и способы «высосать» ее в экстренной ситуации до последнего эрга есть, но АКБ после этого придется сдать на утилизацию. Выбрасывать нельзя, там свинец.

Температурная зависимость напряжения полностью заряженной АКБ существенна. Если дать заряд на АКБ, еще не остывшую от экстратока разряда (стартер в момент пуска берет до 600 А, а крутящий до 75 А), то напряжение на ней может резко прыгнуть, т.к. отклик свинцового аккумулятора током потребления на скачок приложенного напряжения сильно, по меркам электроники, затянут, до десятков мс. Получим саморазогрев и вскипание электролита на борту. Поэтому в бортсети машины напряжение на АКБ ограничивают 2,35 В на банку (7,05 В, 14,1 В, 23,5 В), что и вызывает хронический недозаряд.

При заряде от внешнего ЗУ напряжение на АКБ ограничивают величиной 2,4 В на банку (6,8 В, 14,4 В, 24 В), т.к. «наливать энергии по горлышко», до 2,6 В на банку, рискованно – АКБ при заряде греется и может уйти в саморазогрев. Полностью АКБ дозаряжают и предохраняют от саморазряда т. наз. током содержания, равным 0,5-1 тока 100-часового разряда (0,3-0,6 А, 0,45-0,9 А и 0,6-1,2 А для АКБ на 60 А/ч, 90 А/ч и 120 А/ч соотв.); напряжение на батарее при этом не должно превысить 2,6 В на банку. Практически для этого в ЗУ ставят защиту от перенапряжения на 15,6 В для 12 В АКБ, 7,8 В и 26 В для 6 В и 24 В АКБ. Если она сработала, АКБ приняла энергии, сколько может, и дальше ее заряжать нельзя.

Самодельные ЗУ

Решение собрать самодельную зарядку для аккумуляторных батарей обычно продиктовано 2 основными причинами:

  • отсутствуют деньги на покупку заводского ЗУ, либо автомобилист банально не видит смысла в таких тратах;
  • есть желание попытаться собрать нечто подобное своими руками, спортивный или профессиональный интерес.

В обоих случаях нет существенных преград для того, чтобы приступить к изготовлению самодельного зарядного устройства для автомобильных аккумуляторов своими руками.

Есть возможность собрать как простую, так и более сложную схему.

Наиболее популярными и востребованными среди автолюбителей являются такие ЗУ, собранные на основе:

  • лампочки и диода;
  • выпрямителя.

Это довольно простое, но достаточно эффективное зарядное устройство, которое точно подойдёт для обслуживания автомобильного аккумулятора. Чтобы собрать оба узла своими руками, специальное образование или большой опыт не потребуются.

Лампочка и диод

Если быть точнее, то зарядка собирается из лампочки, а также из полупроводникового диода.

Применять этот вариант ЗУ актуально, если аккумулятор сел и имеющегося заряда не хватает для запуска двигателя. В качестве постоянного зарядного устройства эта схема подходит не самым лучшим образом.

Но всё же именно за счёт быстрой сборки и способности запустить мотор она получила широкое распространение.

В состав схемы входят:

  1. Лампа накаливания. Подойдёт самая обычная лампочка, примерно на 100–150 Вт.
  2. Диод. Брать следует именно полупроводниковый диод. Он отличается тем, что проводит ток лишь в одном направлении. С его помощью переменное напряжение будет преобразовываться в постоянное. Диод должен выдержать довольно высокую нагрузку.
  3. Штекер, обеспечивающий подключение ЗУ к розетке.
  4. Провода с клеммами, так называемыми крокодилами, чтобы соединиться с АКБ.

Принцип сборки схемы заключается в том, чтобы:

  • лампочку соединить с плюсом АКБ и в разрыв между ними подключить диод, а с другой стороны вывести на плюс штекера;
  • минус соединить со штекером;
  • изолировать все соединения и контакты;
  • включить ЗУ в розетку.

При условии, что используется лампочка на 100 Вт, ток заряда составит примерно 0,17 А. То есть на зарядку АКБ потребуется порядка 10 часов.

Важно учитывать, что таким ЗУ можно лишь подзарядить немного севшие батареи, которые сами не способны запустить мотор. Если у батареи глубокий разряд, эта схема не подойдёт

Выпрямитель

Ещё один пример простейшего ЗУ. Рассматриваемое зарядное устройство, предназначенное для АКБ, состоит в основном из выпрямителя.

Есть 2 главных компонента схемы. Это сам выпрямитель, а также преобразователь напряжения.

Для зарядки можно использовать 3 вида выпрямителей. Они могут заряжать с помощью тока:

  • переменного;
  • постоянного;
  • ассиметричного.

Среди всех этих вариантов наиболее предпочтительным выглядит именно последний.

Для сборки ЗУ потребуется соответствующий вариант выпрямителя и хороший усилитель тока.

Конструктивно выпрямитель состоит из:

  • предохранителя;
  • мощного диода;
  • стабилитрона;
  • выключателя;
  • переменного резистора.

Собрать схему несложно.

Сборка предусматривает выполнение таких рекомендаций:

  • подготовить предохранитель требуемого номинала;
  • найти трансформатор мощностью до 150 Вт с выходным напряжением около 21 В;
  • отыскать подходящий резистор типа МЛТ 2;
  • взять выпрямитель, рассчитанный на ток минимум 5 А;
  • усилитель можно собрать из 2 транзисторов типа КТ825;
  • чтобы улучшить охлаждение, при установке транзисторы устанавливают на радиаторы.

Сборку выполняют навесным методом. То есть нужна старая плата, предварительно очищенная от дорожек. На ней размещаются все компоненты и соединяются проводами.

Основным преимуществом рассматриваемой схемы считается возможность регулировки параметров выходящего тока для зарядки источников питания. Но есть и минус. Это необходимость поиска всех составляющих компонентов, а также повышенные требования к качеству и точности их установки и соединения между собой.

У этой схемы есть упрощённый аналог. В нём используют выпрямитель, трансформатор, а также лампочку на 12 В и 40 Вт. Суть схемы в том, чтобы выпрямитель и лапочку подключить к минусовой клемме АКБ, соединив их с трансформатором. А плюс от трансформатора идёт напрямую к положительной клемме аккумулятора.

Какие ещё имеются варианты ЗУ для АКБ

Рассмотрим еще несколько вариантов автономных зарядных устройств.

Использование зарядки от ноутбука для АКБ

Один из самых простых и быстрых способов оживить севший аккумулятор. Для реализации схемы ревитализации аккумулятора с помощью зарядки ноутбука вам потребуются:

  1. Зарядное устройство для любого ноутбука. Параметры зарядных устройств — 19В, сила тока — около 5А.
  2. Галогенная лампа мощностью 90 Вт.
  3. Кабельное соединение с клеммами.

Перейдем к реализации схемы. Лампа служит для ограничения силы тока до оптимального значения. Вместо лампочки можно использовать резистор.

Зарядное устройство для ноутбука также можно использовать для «оживления» автомобильного аккумулятора

Собрать такую ​​схему несложно. Если зарядку от ноутбука не планируется использовать по прямому назначению, вилку можно отрезать, а затем к проводам подсоединить зажимы. Сначала с помощью мультиметра следует определить полярность. Фонарь включен в цепь, идущую к положительному полюсу аккумулятора. Отрицательная клемма аккумулятора подключается напрямую. Только после подключения устройства к аккумулятору можно подавать напряжение на блок питания.

ЗУ своими руками из микроволновой печи или аналогичных приборов

С помощью блока трансформатора, который находится внутри микроволновки, можно сделать зарядное устройство для аккумулятора.

Ниже представлена ​​подробная инструкция по изготовлению самодельного зарядного устройства из блока трансформатора СВЧ.

  1. необходимо снять блок трансформатора с микроволновки.
  2. Снимите вторичную обмотку, затем замените ее изолированным проводом сечением более 2 мм2 .
  3. Определите необходимое количество оборотов изолированного провода. Подобрать нужное значение можно экспериментальным путем. Для этого нужно намотать 10 витков, а затем измерить выходное напряжение. Например, если его значение равно 2 В, потребуется около 70 витков, чтобы достичь 14,5 В. Выходное напряжение будет зависеть от размера используемого провода. Обмотка снята с трансформаторного блока СВЧ
  4. Для реализации схемы понадобится диодный мост и мощный конденсатор.
  5. При желании в схему можно включить амперметр, который будет показывать ток.

Схема подключения трансформатора, диодного моста и конденсаторного блока к автомобильному аккумулятору

Монтаж устройства можно производить на любую базу

При этом важно, чтобы все элементы конструкции были надежно защищены. При необходимости схему можно дополнить переключателем и вольтметром

Бестрансформаторное зарядное устройство

Если поиск трансформатора будет остановлен, можно использовать более простую схему без понижающих устройств. Ниже представлена ​​схема, позволяющая реализовать зарядное устройство аккумулятора без использования трансформаторов напряжения.

Схема подключения зарядного устройства без трансформатора напряжения

В роли трансформаторов выступают конденсаторы, рассчитанные на напряжение 250 В. В схему следует включить не менее 4 конденсаторов, поставив их параллельно. Параллельно конденсаторам в схему включены резистор и светодиод. Роль резистора — гасить остаточное напряжение после отключения устройства от сети.

В схему также входит диодный мост, рассчитанный на работу с токами до 6А. Мост подключается к схеме после подключения к его клеммам конденсаторов и проводов, идущих к аккумулятору на зарядку.

Как сделать самодельный аппарат

Самодельный блок имеет напряжение полтора-два вольта на выходе с силой тока два ампера. Оборудован защитой от замыкания и от переполюсовки для зарядки. Базой прибора является трансформатор двадцать пять вольт. Напряжение выпрямляется диодным мостом.

Регулируется напряжение модулем лM 2596. Для регулировки тока впаян компаратор. Для того, чтобы напряжение регулировалось только до шестнадцати вольт нужно в схему впаять переменный резистор 4,7 КоМ запараллеленный постоянным резистором десять килоом.

Корпус можно взять от любого измерительного прибора. Укрепить на стенке понижающий трансформатор и вставить амперметр со стрелкой. Ставим китайский цифровой вольтметр. Минусовой провод паяем к вольтметру между транзистором защиты и шунтом. Можно сделать Зу ещё проще. Припаять выпрямляющий диод к выходу понижающего трaнсформатора.

Вышеупомянутые конструкции должны иметь предохранители и устройства для измерения параметров нагрузки. Можно и без них, но тогда для измерения придется использовать мультиметр.

Недостатком такой конструкции является отсутствие контроля заряда. Чтобы поддерживать ток в допустимом диапазоне, добавьте резистор к положительному выходу диодного моста.

Самодельное зарядное устройство может сильно нагреваться. Во избежание перегрева цепи желательно запаять кулер. Обратной стороной дизайна является невозможность настройки блока питания.

Полезный совет

При использовании устройств без автоматического контроля заряда АКБ можно применить простейшее сетевое, суточное реле китайского производства. Это избавит от необходимости следить за временем отключения блока от сети.

Стоимость такого прибора около 200 рублей. Зная примерное время зарядки своего аккумулятора, можно выставить нужное время отключения. Это гарантирует своевременное прекращение подачи электричества. Можно отвлечься на дела и забыть о АКБ, что может привести к закипанию, разрушению пластин и выходу аккумулятора из строя. Новый аккумулятор будет стоить гораздо дороже

Мощное импульсное зарядное устройство для автомобильного аккумулятора

Такой блок питания был создан после того, как сгорел мой лабораторный БП, который прослужил всего пару месяцев. Было решено из подручных средств собрать мощный сетевой ИБП, который при желании можно было использовать в качестве зарядного устройства для автомобильных аккумуляторов.

За основу была взята схема полумостового инвертора на драйвере IR2153. По идее, такой инвертор можно собрать из подручного хлама, почти все основные компоненты можно снять из компьютерного блока питания.

На входе питания собран простой сетевой фильтр, пленочные конденсаторы 0,1мкФ подобраны с рабочим напряжением 400 Вольт до и после дросселя, сам дроссель выпаян из платы компьютерного блока питания. На кольце намотаны две независимые обмотки проводом 0,9мм, количество витков каждой обмотки — 10.

Термистор на входе питания защищает полевые ключи от бросков напряжения во время включения схемы. Диодный мост — можно взять готовый или же собрать из 4-х выпрямительных диодов с обратным напряжением не менее 400 вольт и током 1,5-3 А, в моем случае использован готовый диодный мост на 600 Вольт 4А.

От емкости электролитов зависит основная мощность, электролиты легко можно найти в любом компьютерном блоке питания. Мощность инвертора с таким раскладом компонентов составляет порядка 200ватт.

Трансформатор тоже был взят готовый, от того же компового блока питания. Поскольку ИБП должен работать в качестве лабораторного БП, то диапазон выходных напряжений должен быть широким. Трансформатор от компьютерного БП позволяет получить 24 Вольт без переделок, чего вполне достаточно для штатных радиолюбительских дел. Увеличить выходное напряжение можно двумя способами — повышением рабочей частоты генератора или же перемоткой импульсного трансформатора.

Ограничительный резистор 47К брать с мощностью 2 ватт, он обеспечивает питание микросхемы, номинал резистора может отклоняться на 10% в ту или иную сторону. В качестве диодного выпрямителя использована мощная сборка Шоттки, которая в себе содержит два мощных диода по 30А.

После выпрямителя напряжение сглаживается конденсатором 50Вольт 1000мкФ, чего вполне достаточно, но при желании можно увеличить емкость.

Полевые ключи обязательно должны быть высоковольтными, можно использовать ключи типа IRF740/IRF840 и другие. Хочу также заметить, что мощность такого блока питания можно поднять до 400 ватт, при этом заменяя только электролиты, крайне не советую повышать мощность более 500 ватт.

Какой же блок питания без защиты от КЗ? Изначально думал реализовать защиту в первичной цепи схемы, но это будет уже трудно настраиваемая схема, поскольку у многих возникают проблемы связанные именно с защитой, а поскольку изначально мне захотелось собрать устройство, которое бы могли повторить радиолюбители не имеющие нужного опыта работы с ИИП, то решил отказаться от идеи, этим не портить и не усложнять основную схему.

Сама защита реализована на отдельной плате, состоит из двух транзисторов. Номиналом шунта можно грубо настроить ток срабатывания защиты, номиналом переменника, можно более точно настроить на нужный ток срабатывания.

При КЗ и перегрузке блока питания, загорится индикатор и питание отключается, блок выходит из защиты моментально, при отсутствии кз или перегруза на выходе.

Полевой транзистор практически любой, с током 20-100A, можно использовать ключи типа irfz44, irfz40, irfz24, irfz46, irfz48, irf3205 и другие. Регулятор мощности — одна из важнейших частей блока питания. За основу взял схему ШИМ регулятора, поскольку такое управление имеет очень много плюсов.

ШИМ — регулятор построен на таймере 555 и мощном ключе IRFZ44, напряжение плавно можно регулировать от . до максимального выходного напряжения с трансформатора.

Данный блок справляется с любыми задачами, которые могут возникнуть в радиолюбительской практике — легкий, мощный и компактный, вольт/амперметр будет цифровым, заказан отдельно на интернет магазине, будет установлен на блок в ближайшее время.

Что следует учитывать при выборе ПЗУ?

Несмотря на то, что за некоторое количество времени сформировался определенный рейтинг моделей пуско-зарядных устройств, с которой можно ознакомиться ниже, не всегда самая популярная и ходовая модель подойдёт в каждом конкретном случае. Приобретать прибор нужно, отталкивать от своих потребностей, ситуации и возможностей. Для выбора наиболее подходящего ПЗУ нужно учитывать несколько основных характеристик, подробно которые описаны ниже.

Максимальный пусковой ток

Одним из самых главных параметров, на который нужно обратить внимание при выборе пуско-зарядного устройства является величина пускового тока. Измеряется такой показатель в амперах и показывает величину заряда, которая передаётся на АКБ при использовании прибора. Чтобы выбрать наиболее подходящую модель, нужно отталкиваться от объёма двигателя автомобиля, для которого приобретается устройство

Для малолитражек достаточно прибора с параметром пускового тока до 200 ампер. Если двигатель большего объема, то лучше отдавать предпочтение ПЗУ с пусковым током 300 ампер

Чтобы выбрать наиболее подходящую модель, нужно отталкиваться от объёма двигателя автомобиля, для которого приобретается устройство. Для малолитражек достаточно прибора с параметром пускового тока до 200 ампер. Если двигатель большего объема, то лучше отдавать предпочтение ПЗУ с пусковым током 300 ампер.

Поддерживаемое напряжение

Что касается показателя выдаваемого напряжения, то рекомендуется приобретать прибор с таким показателем в 19 Вольт. Несмотря на то, что работа бортовой сети автомобиля происходит при напряжении 12 вольт, в случае, когда невозможно запустить двигатель из-за разряженной аккумуляторной батареи, потребуется большее напряжение, нежный при обычной заводке двигателя.

Габариты и масса

Такие параметры ПЗУ зависят от дальнейших условий его эксплуатации. Усли у автолюбителя есть гараж и нет необходимости иметь прибор постоянно при себе, то лучше приобретать более мощное ПЗУ, которое может весить в среднем 20 кг .

Если же автолюбитель не пользуется гаражом, а оставляет свой автомобиль на парковке и предпочитает иметь ПЗУ с собой, то оптимальным вариантом является приобретение более лёгкого и портативного прибора, масса которого не превышает 10 кг, а ширина и высота соответственно 20 и 40 см.

Дополнительные параметры и функции

Касаемо различных дополнительных функций, то не лишним будет приобрести устройство, оснащенное различными системами защиты, например, если автовладелец перепутал клеммы, когда присоединял устройство к бортовой сети автомобиля.

Стоит также отдавать предпочтение приборам, которые позволяют регулировать показатели тока и напряжения. С помощью такой функции можно самостоятельно выбирать требуемую величину в зависимости от ситуации и состояния АКБ.

При покупке стоит обратить внимание на материал, из которого изготовлен корпус прибора. Предпочтение лучше отдавать устройствам с металлическим корпусом или выполненным из высокопрочного пластика. Такие модели с могут прослужить длительное время

Такие модели с могут прослужить длительное время.

Как не нужно!

Поговорим вначале и типичных ошибках конструирования самодельных ЗУ для свинцовых АКБ. Первую иллюстрируют поз. вверху. Подключение непосредственно к бытовой электросети (слева) обсуждения не стоит. Это не ошибка, это грубейшее и опасное нарушение ПТБ. Ошибка – в ограничении тока заряда емкостным балластом. Дорогой, кстати, это способ по сегодняшним меркам: одна только батарея масляно-бумажных конденсаторов на 32 мкФ 350 В (на меньшее напряжение нельзя) стоит больше, чем хорошая фирменная зарядка.

Неправильно и нерационально построенные схемы зарядных устройств для автомобильных аккумуляторов

Но главное – в сети появляется реактивная нагрузка. Если в вашем электросчетчике есть индикатор реактивности (светодиод «Возврат»), то при включении этих зарядок в сеть он вспыхнет. Управление современным электрохозяйством невозможно без компьютеров, а «обратка» сбивает электронику с толку даже до отключений по ложной аварии. Поэтому теперешние электрики к реактивке беспощадны. Ну, а вдруг обнаружится, что ее источник неграмотный или излишне хитроумный потребитель, то… не будем на ночь глядя.

Схема внизу, если на считать того же емкостного балласта, разработана квалифицированно, это ЗУ защитит АКБ, образно говоря, и от Тунгусского метеорита; (с подробным ее описанием можно познакомиться здесь: http://ydoma.info/avtomobil-zaryadnoe-ustrojstvo-dlya-avtomobilnogo-akkumulyatora.html). Но, при всем уважении к безусловно знающему свое дело автору, строить так сложно (и дорого) ЗУ для свинцовых АКБ все равно что назначать командовать взводом опытных закаленных солдат нянечку из детсадика. Свинцовому аккумулятору для хорошей жизни нужно немногое. Чем мы далее и займемся.

Простое зарядное устройство для АКБ на основе тиристора

По сути, речь идёт о тиристорном регуляторе. В прилагаемой схеме нет блока защиты, контрольного модуля и иных наворотов. Простота и минимальное количество деталей обусловили популярность этой несложной конструкции.

Возникает вопрос: не проще ли приобрести готовое устройство на тиристорах в магазине? Вроде бы, так и нужно поступить. Но у заводских недорогих ЗУ есть некоторые проблемы. Например, ток настраивается солидным переключателем, элементарно убавляющим либо прибавляющим витки в обмотке II трансформатора. Благодаря этому ток возрастает или падает. Получается грубо, ступенчато. А более качественное ЗУ стоит достаточно дорого. Поэтому имеет смысл сделать простое зарядное устройство своими руками. Плюсы:

  • доступность электронных компонентов и невысокая их стоимость;
  • лёгкость в поиске требуемой схемы (через интернет);
  • плавность регулировки тока зарядки (диапазон 1010 ампер);
  • использование импульсного тока, продлевающего эксплуатационный срок аккумулятора;
  • простая наладка;
  • стабильное функционирование.

Принцип работы схемы и подбор деталей

Перед вами фазоимпульсный регулятор, где главными элементами являются тиристоры. Под текстом – доступная схема зарядного устройства для автомобильного аккумулятора:

Электронные компоненты зарядного устройства для автомобиля, которое вы хотите собрать своими руками, с учётом обозначения:

  • С1 – от 047 до 1 мкФ на 63 В;
  • R1 сопротивлением 6,8 кОм (Р = 0,25 Вт);
  • R2 на 300 Ом;
  • R3 на 3,3 кОм;
  • R4: 110 Ом;
  • R5: 15 кОм;
  • R6: 50 Ом;
  • R7 на 150 Ом мощностью 2 Вт;
  • VD1 – диод импульсного типа, обратное напряжение от 50 В;
  • VS1 – тиристор Т-160, 250 или КУ202;
  • транзисторы с прямым переходом КТ315 или им подобные (КТ3107 и т. д.);
  • транзисторы с обратным переходом КТ361, КТ 3102 и т. п.;
  • FU1: предохранитель на 10 А (подойдёт деталь на 15–20 А, с запасом).

На тиристор воздействуют компоненты VT1 и VT2. Затем в работу вступает диод, защищающий цепь от скачков напряжения, возникающих на VS1. R5 в самодельном зарядном устройстве для аккумулятора «вычисляет» I = 1/10 ёмкости. При 60 А/ч используется зарядка в 6 А. Чтобы знать точно, на контактах, ведущим к заряжаемому изделию, желательно вставить амперметр. Это позволит держать контроль над процессом.

Теперь о питании. Схема самодельного зарядного устройства для автомобильного аккумулятора подразумевает применение трансформатора, выдающего от 18 до 22 В. При большем значении сопротивление R7 увеличьте до 200 Ом. Не забудьте элементы моста на диодах закрепить на охлаждающих алюминиевых радиаторах (применяйте специальную пасту). Стоит отметить: использование диодов старого образца типа Д242 подразумевает их установку на радиатор через изолирующие прокладки-шайбы. Номинал предохранителя должен соответствовать применяемому току. Если это до 6 А, то для FU1 вполне достаточно 6,3 А. Ниже – схема для зарядных устройств для автомобильного аккумулятора (обратная сторона печатной платы):

Помимо предохранителя, существуют электронные способы гарантии от замыкания и перепутывания полюсов, что ведёт к выходу из строя ЗУ. Например, у вас имеется изделие, где уже невозможно различить «плюс», «минус». Тогда поможет специальная схема, сигнализирующая о неправильном подключении клемм. Её нужно включать последовательно между АКБ и ЗУ:

Используемые детали:

  • R1 и R2 – резисторы сопротивлением по 510 Ом;
  • VD1 и МВ2 – диоды (например, 1N4148 или ему подобные);
  • VD3 и МВ4 (можно не устанавливать);
  • реле любое на 12 В и 15 А (можно вытащить из отслужившего своё UPS);
  • светодиоды любые.

Схема работает просто. При соблюдении полярности заряд, ещё имеющийся в батарее, замкнёт контакты реле, процесс начнётся, что подтвердит загоревшийся зелёный светодиод. Если же контакты перепутаны, зажжётся красный сигнализатор. Ниже – печатная плата устройства, защищающего от несоблюдения полярности при зарядке:

Мобильные ПУ

Ещё один вид ПУ, точнее сразу два, похожих по принципу действия — аккумуляторное и конденсаторное. Конденсаторный прибор работает за счёт разрядки заряженных конденсаторов по команде. Особенно сложным их состав назвать нельзя, но сами конденсаторы таких номиналов довольно дороги и не восстанавливаются после повреждений или пересыхания. Используют их очень редко, хотя они довольно мобильны, но из-за высоких нерегулируемых токов есть риск нанести вред АКБ.

Бустеры, или аккумуляторные пускачи, работают ещё проще. По большому счёту, это просто дополнительная батарея в автономном корпусе. Именно автономность принесла им популярность. Их можно использовать хоть в степи, где нет электричества. Предварительно заряженный аккумулятор подключается к бортовой электросети и спокойно запускает двигатель

При этом важно выбрать ёмкость бустера и его пусковой ток. Он не может быть меньше, чем у стандартной батареи

Бытовые автономные установки имеют ёмкость от 18 А/ч, а более дорогие и громоздкие, профессиональные приборы, могут иметь ёмкость порядка 200 А/ч.

Любое из этих помощников водителя поможет запустить двигатель, но надёжнее и дешевле трансформаторного ПУ, собранного своими руками, пока нет. Удачной всем работы и быстрого пуска!

ПИ или ИБП?

В наши дни компьютерный импульсный блок питания (ИБП) может оказаться доступнее трансформатора на железе; вдруг он просто в хламе валяется. ИБП часто переделывают в лабораторные БП, но, вообще говоря, это плохой вариант. Выходное напряжение по каналу +12 В удается задрать максимум до 16-17 В, чего для конструкторско-исследовательских целей маловато. А уровень импульсных помех на выходе тогда, мягко говоря, великоват. Как налаживать УМЗЧ с собственными шумами в –66 дБ (что еще очень скромненько), если по питанию «шерсти прет» на –44 дБ или хуже того? Но вот зарядка для аккумулятора автомобиля на 60 А/ч из ИБП получается отличная, и отдельную защиту городить не надо, все уже есть. Переделывают ИБП в авто ЗУ в целом след. образом:

  1. Удаляют выходные провода кроме желтых (+12 В), черных (общий, масса, GND) и зеленого провода логического включения PC ON;
  2. Провод PC ON закорачивают на массу (соединяют с любым из черных);
  3. Ставят механический выключатель сети, если нет штатного сзади;
  4. По схеме или руководствуясь собственным опытом, ищут в обвязке стабилизатора +12 В резистор в цепи обратной связи Rcs;
  5. Заменяют его потенциометром на 10 кОм Rн;
  6. Вращая движок Rн, устанавливают в канале +12 В напряжение +14,4 В;
  7. Замеряют полученное значение Rн и вместо Rcs впаивают постоянный резистор ближайшего номинала из стандартного ряда, допуск на разброс до 2%;
  8. По возможности встраивают в ИБП универсальный указатель напряжения и тока (см. далее) для контроля заряда, питание его – от цепи заряда или +5 В (красный провод);
  9. Сводят желтые и черные провода в отдельные жгуты, надежно присоединяют к ним токовые шланги с зажимами для подключения к АКБ – зарядка готова!

Описание и принцип работы пуско-зарядного устройства

Здесь особо сложного ничего нет. Сетевое U = 220 В подаётся через выключатель на первичную обмотку трансформатора, а на вторичной происходит уменьшение переменного напряжения. Потом оно сглаживается двухполупериодным или мостовым выпрямителем, собранным на мощных диодах. Далее пульсирующее напряжение может быть отфильтровано посредством электролитических конденсаторов. При необходимости около выхода осуществляется увеличение напряжения, что делается с помощью усилителей, в которых основными компонентами являются транзисторы, тиристоры.

Из недостатков описываемого пуско-зарядного устройства можно отметить разве что солидный вес, что обусловлено установкой мощного и, как следствие, габаритного трансформатора. Ниже – схема двухполупериодного пуско-зарядного устройства своими руками:

В этой схеме задействован лабораторный трансформатор ЛАТР. Вместо двух диодов можно использовать и диодный мост типа КЦ405. Схема пуско-зарядного устройства для автомобиля с усилителем:

Как сделать пуско-зарядное устройство своими руками, чтобы оно наверняка заработало? Нужно соблюдать параметры деталей. Мощность указанных на картинке тиристоров – не менее 80 А (если будет использоваться диодный мост, то от 160 А). Диоды на ток – 100–200 А. Транзистор – КТ361 либо КТ 3102 (можно любой другой с такими же параметрами). Мощность используемых резисторов – от 1 Вт.

Собранное своими руками зарядно-пусковое устройство подключается через зажимы-крокодилы к АКБ в соответствии с полярностью. При нормально заряженной батарее с ПЗУ энергия поступать не будет. Если же АКБ не функционирует, тиристорный переход откроется, и зарядный ток пойдёт на батарею и стартер.

Расчёт обмоток трансформатора

Сначала нужно подобрать магнитопровод, сечение которого должно быть не меньше 37 кв. см. Чтобы рассчитать количество витков в первичной обмотке, необходимо воспользоваться формулами: Т = 30/S, где S – площадь магнитопровода и N = 220*Т, то есть W1 = 220*30/37 = 178 витков. Для обмотки необходимо использовать изолированный провод сечением не менее 2 кв. мм. Формула для вторичной обмотки: W2 = 16*Т = 16*30/37 = 13 витков. Здесь понадобится шина из алюминия площадью 36 кв. мм.

Стоит заметить, что формулы не всегда могут выдавать точное число обмоток (особенно вторичной), поэтому можно применить метод подбора. Намотав первичную обмотку, накрутите несколько витков вторичной и измерьте получившееся напряжение, не обрезая шину. Таким образом нужно добиться на выходе значения 14–16 В.

Дело будет обстоять проще, если у вас имеется ЛАТР – лабораторный трансформатор. От него нужно взять сердечник. Количество витков первичной обмотки – 265–295. Используйте изолированный провод сечением 2 мм. Намотку производите в три слоя. Далее обязательно проверьте значение тока холостого хода (включите мультиметр в разрыв между сетью 220 В и одним из концов обмотки). Прибор должен показывать 210–390 мА. Если показания больше, число витков нужно увеличить, в противном случае, наоборот, уменьшить. Вторичная обмотка разделена на две секции, в каждой из которых 15–18 витков. Здесь понадобится провод сечением 10 кв. мм.

Расчёт выпрямителя

Далее рассмотрены параметры электронных компонентов (помимо указанных выше), применяемых в обеих схемах:

  1. Диоды. Максимальный пропускаемый ток не должен быть менее 100 А. Это могут быть В200, Д141, 2Д141, 2Д151 и иные аналогичные детали. Вместо КД105 не возбраняется применять КД209 или даже Д226. Стабилитрон – Д808, 2С182 и т. п.
  2. Тиристоры. I = 80 А и более: ТС185, Т15-80, Т15-100, Т161, Т125 и т. п. Если используется вариант выпрямления тока с диодным мостом, тиристоры будут мощнее вдвойне: Т15, Т160, Т250, Т16 и другие, аналогичные.
  3. Транзисторы. Здесь важен коэффициент усиления h = 21э. Это КТ361 либо КТ3107 проводимостью n-p-n. Вместо КТ816 подойдёт и КТ814.
  4. Резисторы. Желательно, чтобы их мощность была не менее 1 Вт.
  5. Выключатель. Должен держать ток от 6 А.

Подбор сечения проводов

Подбирая выходные провода, которые будут присоединяться к аккумулятору, нужно помнить, что их диаметр не может быть меньше такого же параметра вторичной обмотки. Лучше использовать многожильный медный кабель, используемый в сварочных аппаратах, где каждый проводок имеет сечение 2,5 кв. мм. Такую же площадь должен иметь провод, посредством которого самодельный аппарат будет подключаться к сети. Не забудьте приобрести мощные зажимы-крокодилы для подключения к клеммам АКБ. Здесь тоже рекомендуется использовать изделия, применяемы при сварке («масса»).

Принцип работы автомобильного аккумулятора

Автомобильный аккумулятор подаёт питание на различные приборы в автомобиле при выключенном двигателе и предназначен для его запуска. По виду типу исполнения применяется свинцово-кислотная батарея. Конструктивно она собирается из шести элементов питания с номинальным значением напряжения 2,2 вольта, соединённых между собой последовательно. Каждый элемент представляет собой набор решетчатых пластин из свинца. Пластины покрываются активным материалом и погружаются в электролит.

Раствор электролита включает в свой состав дистиллированную воду и серную кислоту. От плотности электролита зависит морозостойкость батареи. В последнее время появились технологии, позволяющие адсорбировать электролит в стеклянном волокне или сгущать его с использованием силикагеля до гелеобразного состояния.

Каждая пластина имеет отрицательный и положительный полюс, а изолируются они между собой использованием пластмассового сепаратора. Корпус изделия выполняется из пропилена, не разрушающегося под действием кислоты и служащий диэлектриком. Положительный полюс электрода покрывается диоксидом свинца, а отрицательный губчатым свинцом. В последнее время стали выпускаться аккумуляторные батареи с электродами из свинцово-кальциевого сплава. Такие аккумуляторы полностью герметичные и не требуют обслуживания.

При подключении к аккумулятору нагрузки активный материал на пластинах вступает в химическую реакцию с раствором электролита, и возникает электрический ток. Электролит со временем истощается из-за осаждения сульфата свинца на пластинках. Аккумуляторная батарея (АКБ) начинает терять заряд. В процессе зарядки химическая реакция происходит в обратном порядке, сульфат свинца и вода преобразуются, повышается плотность электролита и восстанавливается величина заряда.

Принцип действия тиристорного регулятора

Тиристор имеет два состояния – открытый, в котором он пропускает электрический ток и закрытый. Открывается этот элемент при протекании тока через управляющий электрод и остается открытым, пока через тиристор идет ток. Переменное напряжение в сети имеет синусоидальную форму. Тиристор, включенный в цепи нагрузки, открывается в определенный момент полуволны. Это называется “угол открытия”. В результате этого через электроприбор ток протекает не все время, а только после перехода элемента в открытое состояние. Это меняет действующее значение напряжения на нагрузке.

Важно! Вольтметр измеряет действующее значение. Для надежной работы допустимое напряжение тиристоров должно соответствовать максимальному напряжению, которое больше в 1,4 раз

Для бытовой сети это 308В.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *