Назначение и принцип работы балансирных валов двигателя
Содержание:
- Неисправности и их ремонт
- Балансирный вал
- Ремонт балансировочных валов
- Статическая балансировка
- Первичная и вторичная балансировка
- Проблемы при оплате банковскими картами
- Приложения
- Блок цилиндров Головка блока цилиндров Поршень Шатун Коленчатый вал
- Ремонт балансирных валов
- Недостатки балансирной системы двигателя
- Mitsubishi Outlander 390 000 км › Бортжурнал › Установка ремня ГРМ и балансирных валов
- Неисправности и ремонт
- Причины вибрации карданной передачи
- Принцип работы балансирных валов двигателя
- Коробка передач
- Эксплуатация балансировочных валов
- Вторичный гармонический балансир
- Балансирный вал двигателя
Неисправности и их ремонт
Неисправность | Причины | Что делать |
Перегрев | разрушены шатунные вкладыши, забиты каналы смазки или заложены маслосъёмные кольца | заменить вкладыши, раскоксовать или заменить кольца |
Стук внутри ГБЦ | выработка гидротолкателей | замена расходников |
Увеличение расхода масла | износ прокладок топливной системы или выработка маслосъёмных колпачков | замена прокладок или колпачков |
Заедание стартера | износ зубчатого венца маховика | заменить венец или маховик |
Сильная дымность | неисправность топливной аппаратуры, включая клапан ГБЦ, что приводит к неполному сгоранию топлива и образованию дыма | проверка узлов и настройка, ремонт |
Затруднённый пуск в зимнее время | выход из строя предпускового подогрева, нарушение контактов в системе электрообеспечения, неисправность генератора, слабозаряжённая АКБ | замена деталей, очистка контактов, ремонт, зарядка батареи |
Потеря мощности, неустойчивое функционирование | выход из строя ТНВД или подкачивающего насоса, загрязнение воздушного фильтра | ремонт/замена ТНВД, очистка фильтра |
Балансирный вал
Балансирный (уравновешивающий) вал — дополнительный элемент балансировки для снижения вибраций двигателя. В процессе работы кривошипно-шатунного механизма возникает инерция, которая становится результатом движения деталей ДВС и воздействия ряда других сил. Двигатели внутреннего сгорания могут иметь разные схемы расположения цилиндров. Наиболее распространены:
- Рядная схема, когда оси цилиндров находятся в единой плоскости;
- Оппозитная схема означает, что оси цилиндров находятся под углом 180° в двух плоскостях;
- V–образная схема компоновки с осями цилиндров в двух плоскостях;
Встречаются схемы, когда оси цилиндров находятся в двух плоскостях под разным углом, а также аналогичная схема с дополнительным смещением на коленвале и т.д. От той или иной схемы напрямую зависит степень балансировки ДВС. Лучший баланс демонстрируют оппозитные двигатели. Неплохо сбалансированы рядные двигатели на 4 цилиндра с рабочим объемом до двух литров. V-образный мотор оптимально сбалансирован только под строго определенными углами между цилиндрами.
При работе ДВС возникают уравновешенные и неуравновешенные силы. К уравновешенным силам можно отнести силу давления газов и силу трения. Неуравновешенными силами является инерция, вес силового агрегата и т.д. Указанные силы получили название силы инерции второго порядка.
Как известно, чаще всего уравновешивание достигается путем установки противовесов на щеках коленвала. Такой способ работает, но не всегда позволяет качественно сбалансировать мотор зависимо от той или иной схемы расположения цилиндров.
Инерция возникает от возвратно-поступательного движения поршней и вращательного движения шатунов. Дополнительно присутствуют также силы инерции в продольной плоскости. Результатом воздействия этих сил становится вибрация ДВС, что приводит к повышенному уровню шумов, определенным нагрузкам на элементы двигателя, а также к преждевременному износу деталей и механизмов. Для решения этой задачи в конструкции рядных и других двигателей могут дополнительно к маховику использоваться балансирные валы.
Сила инерции второго порядка уравновешивается двумя балансирными валами, которые могут иметь противовесы. Валы вращаются как с одинаковой скоростью параллельно коленвалу, так и в два раза быстрее частоты вращения коленчатого вала, что зависит от конкретного мотора.
Балансирный вал является стержнем из металла, который имеет достаточно замысловатую форму с выточенными на нем пазами. Вал осуществляет постоянное вращение. Крутится вал в двух подшипниках скольжения. Смазывание данных подшипников реализовано через систему смазки ДВС.
Единственным способом дополнительного уменьшения вибрации ДВС является балансировка агрегата. Рядный четырехцилиндровый мотор получает неуравновешенные силы, которые возникают при движении масс с учетом той или иной частоты вращения коленвала. Величина инерции зависит от объема ДВС, с ростом объема силовой установки инерция увеличивается.
Балансировочный вал устанавливается на рядных четырехцилиндровых моторах с рабочим объемом выше двух литров. Стоит отметить, что установка таких валов приводит к заметному удорожанию конструкции и не особенно активно применяется на автомобилях даже среднего ценового сегмента.
Балансирные валы ставятся парами. Их зачастую располагают симметрично по обеим сторонам коленвала. Местом установки балансирных валов чаще всего становится картер двигателя, чтобы валы оказались ниже коленчатого вала ДВС. Получается, что указанные валы находятся под коленвалом, а местом их установки становится масляный поддон.
Балансирные валы имеют прямой привод от коленвала. Привод реализует вращение уравновешивающих валов в разные стороны.
Угловая скорость вращения балансиров удвоена. Привод может быть выполнен как отдельно посредством зубчатого редуктора или цепной передачи, так и представлять собой совокупность решений. Крутильные колебания от вращения самих валов гасятся пружинным гасителем колебаний, который размещен в приводной звездочке привода уравновешивающего вала.
В процессе работы и благодаря особенностям конструкции привода балансирные валы подвержены серьезным нагрузкам. Наиболее перегружены подшипники, которые расположены в противоположной от привода стороне. Имеет место их быстрый износ, который проявляется дополнительными шумами и появлением усиленных вибраций. В худших случаях может произойти обрыв приводной цепи. Дополнительным недостатком становится отбор мощности ДВС, которая расходуется на привод балансирных валов.
Ремонт балансировочных валов
Как и любой другой сложный механизм, привод уравновешенных валов тоже может выйти из строя. Чаще всего это происходит в результате естественного износа подшипников и зубчатых деталей, так как они испытывают достаточно большие нагрузки.
Когда блок валов приходит в негодность, это сопровождается появлением вибраций и шумами. Иногда шестерня привода из-за поломки подшипника блокируется и обрывает ремень (или цепь). Если выявлена неисправность балансировочных валов, метод устранения один – замена испорченных элементов.
Механизм имеет сложную конструкцию, поэтому за его ремонт придется заплатить приличную сумму (работы должны проводиться исключительно в сервисном центре, даже если это просто замена устаревшей детали на новую). По этой причине, когда блок валов выходит из строя, его просто удаляют из мотора, а отверстия закрывают соответствующими заглушками.
Это, конечно, должна быть крайняя мера, так как отсутствие компенсаторов вибраций приводит к разбалансировке мотора. Как заверяют некоторые автомобилисты, которые воспользовались таким методом, вибрации без блока валов не настолько серьезные, чтобы соглашаться на дорогостоящий ремонт. Несмотря на это, силовой агрегат становится немного слабее (мощность может снизиться до 15 лошадиных сил).
Решаясь на демонтаж блока, автомобилист должен четко понимать, что существенное вмешательство в конструкцию мотора может сильно повлиять на его работоспособность. А это в последующем может привести к капитальному ремонту ДВС.
Статическая балансировка
Задачей статической балансировки является приведение центра масс ротора на ось вращения путем изменения распределения массы.
Наука о балансировке роторов объемна и разнообразна. Существуют способы статической балансировки, динамической балансировки роторов на станках и в собственных подшипниках. Балансируют самые различные ротора от гироскопов и шлифовальных кругов, до роторов турбин и судовых коленчатых валов. Создано множество приспособлений, станков и приборов с применением новейших разработок в области приборостроения и электроники для балансировки разных агрегатов. Что касается агрегатов, работающих в теплоэнергетике, то нормативной документацией по насосам, дымососам и вентиляторам предъявляются требования по статической балансировке рабочих колес и динамической балансировке роторов. Для рабочих колес применима статическая балансировка, т. к. при превышении диаметром колеса его ширины более чем в пять раз, остальные составляющие (моментная и динамическая) малы, и ими можно пренебречь.
Первичная и вторичная балансировка
Исторически проектировщики двигателей использовали термины «первичная балансировка» и «вторичная балансировка»
Эти термины связаны с порядком возникновения проблем в процессе разработки, и потому в какой-то степени отражают важность этих аспектов в балансировке
Определения первичной и вторичной балансировок разнятся. В общем случае первичная балансировка связана с компенсированием момента движущихся поршней (но не их кинетической энергии) во время оборота коленвала. Вторичная балансировка связана с компенсированием (или отсутствием таковой):
- кинетической энергии поршней;
- несинусоидального движения поршней (иногда является частью первичной балансировки);
- поперечного движения коленвала и балансирного вала;
- различных паразитных качаний (моментов инерции), создаваемых балансируемыми массами, как например нежелательный сдвиг противоположных цилиндров в оппозитном двигателе, создаваемые конфигурацией коленвала.
Несмотря на утверждения конструкторов и производителей, ни одна конфигурация поршней не является идеально сбалансированной. Подгоняя некоторые определения первичной и вторичной балансировок, можно утверждать, что некоторые конфигурации являются идеально сбалансированными в ограниченных рамках. Так, «рядная шестёрка», V12 и crossplane (то есть V8 с углом развала 90 градусов, кривошипы которого лежат в двух взаимно перпендикулярных плоскостях) отлично сбалансированы по своей природе, а оппозитный двигатель имеет идеальную первичную балансировку, так как движение одной части компенсируется движением противоположной.
Проблемы при оплате банковскими картами
Иногда при оплате банковскими картами Visa / MasterCard могут возникать трудности. Самые распространенные из них:
- На карте стоит ограничение на оплату покупок в интернет
- Пластиковая карта не предназначена для совершения платежей в интернет.
- Пластиковая карта не активирована для совершения платежей в интернет.
- Недостаточно средств на пластиковой карте.
Для того что бы решить эти проблемы необходимо позвонить или написать в техническую поддержку банка в котором Вы обслуживаетесь. Специалисты банка помогут их решить и совершить оплату.
Вот, в принципе, и все. Весь процесс оплаты книги в формате PDF по ремонту автомобиля на нашем сайте занимает 1-2 минуты.
Если у Вас остались какие-либо вопросы, вы можете их задать, воспользовавшись формой обратной связи, или написать нам письмо на
Приложения
Двухцилиндровые двигатели
Многочисленные двигатели мотоциклов, особенно прямые сдвоенные двигатели , используют системы уравновешивающих валов, например, двигатели Yamaha TRX850 и Yamaha TDM850 имеют коленчатый вал 270 ° с уравновешивающим валом. Альтернативный подход, который используется в параллельном двухцилиндровом двигателе BMW GS , заключается в использовании «фиктивного» шатуна, который перемещает шарнирный противовес.
Четырехцилиндровые двигатели
Механизмы газораспределения на двигателе Ford Taunus V4 . Уравновешивающий вал идет от малой шестерни слева (большая шестерня предназначена для распределительного вала , заставляя его вращаться с половиной скорости коленчатого вала).
Балансирные валы часто используются в четырехрядных двигателях для уменьшения (вертикальная сила, колеблющаяся при удвоенных оборотах двигателя ), которая присуща конструкции типичного рядного четырехцилиндрового двигателя. Эта вибрация возникает из-за того, что движение шатунов в равномерно работающем рядном четырехцилиндровом двигателе не является симметричным при вращении коленчатого вала; таким образом, в течение заданного периода вращения коленчатого вала опускающийся и поднимающийся поршни не всегда полностью противостоят друг другу в своем ускорении, создавая результирующую вертикальную силу дважды за каждый оборот (которая увеличивается квадратично с числом оборотов в минуту).
Количество вибрации также увеличивается с рабочим объемом двигателя, в результате чего балансирные валы часто используются в рядных четырехцилиндровых двигателях с рабочим объемом 2,2 л (134 куб. Дюйма) или более. Как увеличенный ход, так и диаметр отверстия вызывают повышенную вторичную вибрацию; больший ход увеличивает разницу в ускорении, а больший канал увеличивает массу поршней.
Конструкция систем уравновешивающих валов Lanchester была усовершенствована с помощью , автомобильного рядного четырехцилиндрового двигателя, представленного в 1975 году. Этот двигатель был первым, в котором один уравновешивающий вал был расположен выше другого, чтобы противодействовать качению пары второго порядка (т.е. оси коленчатого вала) из-за крутящего момента, создаваемого инерцией, вызванной увеличением и уменьшением частоты вращения двигателя.
В четырехцилиндровом двигателе силы компенсируются поршнями, движущимися в противоположных направлениях. Поэтому балансирные валы не нужны в четырехквартирных двигателях.
Шестицилиндровые двигатели
В рядном шестицилиндровом двигателе и плоском шестицилиндровом двигателе силы качания уравновешены естественным образом, поэтому балансирные валы не требуются.
Двигатели V6 по своей природе неуравновешены, независимо от угла поворота. Любой рядный двигатель с нечетным числом цилиндров имеет , который вызывает сквозное качательное движение. Поскольку каждый ряд цилиндров в V6 состоит из трех цилиндров, каждый ряд цилиндров испытывает это движение. Уравновешивающие валы используются в различных двигателях V6 для уменьшения этого раскачивания. В отличие от двигателей V6 с углом поворота 90 °, двигателям V6 с углом поворота 60 ° не требуется балансирный вал.
Блок цилиндров Головка блока цилиндров Поршень Шатун Коленчатый вал
Неподвижные детали кривошипно-шатунного механизма
Кривошипно-шатунный механизм многоцилиндрового двигателя состоит из подвижных и неподвижных деталей. К подвижным деталям КШМ относятся: поршень, поршневые кольца, поршневой палец, шатун, коленчатый вал, вкладыш подшипника и маховик. Неподвижными деталями КШМ являются: блок цилиндров, головка блока цилиндров и прокладка головки блока. Кривошипно-шатунный механизм воспринимает давление газов, возникающих при сгорании топлива в цилиндрах двигателя, и преобразует это давление в механическую работу по вращению коленчатого вала.
Схемы расположения цилиндров в двигателях различной компоновки
:а — рядный четырехцилиндровый;б — V-образный шестицилиндровый;в — оппозитный четырехцилиндровый;г — VR-двигатель шестицилиндровый;д ие — W-образные 12-цилиндровые двигатели;α — угол развала Расположение цилиндров в блоке определяет компоновочную схему двигателя. Если оси цилиндров расположены в одной плоскости, то такие двигатели называют рядными. Рядные двигатели устанавливаются на автомобиле или вертикально, или под углом к вертикальной плоскости для уменьшения высоты, занимаемой двигателем, а в некоторых случаях – горизонтально, например при размещении под полом автобуса. В V-образных двигателях оси цилиндров находятся в двух плоскостях, расположенных под углом друг к другу. Угол между осями цилиндров может быть различным. Разновидностью такого двигателя можно считать двигатель с так называемыми оппозитными (противолежащими) цилиндрами (в некоторых странах такую компоновку называют «boxer»), у которого этот угол составляет 180°. Сравнительно недавно появился двигатель W12, разработанный группой компаний Volkswagen, схема которого представляет собой как бы два V-образных двигателя с разными углами между осями цилиндров, имеющими общий коленчатый вал.
Двигатель W12, устанавливаемый на AudiA8 с 2001г., практически состоит из двух двигателей V6 с различными углами развала цилиндров, использующих общий коленчатый вал
Базовые понятия КШМ ДВС – это диаметр цилиндра и ход поршня.Диаметр цилиндра – это диаметр отверстия, под поршень, выполненного в блоке цилиндров ..Ход поршня — расстояние между ВМТ и НМТ. Диаметр цилиндра и ход поршня принято измерять в миллиметрах, а объем двигателя – в литрах. Понятно, что два двигателя одинакового объема могут иметь различное число цилиндров и различную компоновку.
Если диаметр цилиндра больше хода поршня, то такой двигатель называют короткоходным
. Данные двигатели развивают более высокие максимальные обороты коленчатого вала, и в них упрощается размещение впускных и выпускных клапанов, что дает возможность получения высокой мощности. Если ход поршня превышает диаметр цилиндра, то двигатель считаетсядлинноходным . Такие двигатели, как правило, более экономичны и характеризуются большими значениями крутящего момента. Длинноходные двигатели имеют большую высоту, но короче по длине. При разработке конструкции двигателя приходится решать вопрос о выборе величины объема отдельного цилиндра. Если объем цилиндра сделать очень маленьким, то он будет плохо заполняться топливно-воздушной смесью, и мощность такого двигателя будет низкой. В то же время нельзя безгранично увеличивать объем цилиндра, потому что при этом фронт распространения пламени может не успеть дойти до стенок цилиндра за то короткое время, которое отводится на рабочий ход, а это приведет к уменьшению давления в цилиндре и скажется на уменьшении мощностных показателей двигателя. В современных автомобильных двигателях объем отдельного цилиндра редко превышает 0,8л, а в большинстве двигателей составляет около 0,5л. Чем большее число цилиндров имеет двигатель, тем равномернее он работает. Пульсации, возникающие при работе ДВС, могут быть уменьшены применением массивного маховика, устанавливаемого на конце коленчатого вала. Чем меньше цилиндров имеет двигатель, тем большей массой должен обладать маховик. В то же время массивный маховик из-за своей инерционности ухудшает способность двигателя быстро набирать обороты. Поэтому конструкторам двигателей приходится принимать компромиссные решения.
Ремонт балансирных валов
Во время работы ДВС, установленные балансирные валы испытываются большие нагрузки. Самая большая доля нагрузки приходится на дальние подшипники, в связи с чем, больший износ балансировочных валов происходит в местах соединения с подшипниками и самих подшипников. Если нагрузки на балансирующие валы превышает допустимую, то слышны шумы, ДВС вибрирует сильнее, из-за чего, также, рвется цепь привода балансиров.
Полная съемка работы на видео в автосервисе. Работа по удалению балансировочных валов D4CB, автомобиль Хендай Гранд Старекс.
Стоимость ремонта балансирных валов дороговато, в разных автосервисах по-разному. Поэтому, многие автоводители, чтобы не покупать новые или не ремонтировать, просто демонтируют эти балансировочные валы и ставят заглушки в отверстиях корпуса.
Если использовать балансировочные валы в двигателе, то это усложняет конструкцию и повышает стоимость ремонта, а также приводит к уменьшению мощности ДВС, примерно, на 15 л.с.
Если балансирные валы изношены, то, как правило, уменьшается мощность двигателя и увеличивается время разгона. Это связано с тем, что при износе валов для балансировке нарушаются фазы, фазы газораспределения смещаются в сторону позже.
Недостатки балансирной системы двигателя
Первый и главный недостаток – это дорогостоящий ремонт системы. Так как состоит она из множества мелких деталей, а также при произведении любых ремонтных работ нуждается в дополнительной балансировке, то и ценник на услуги восстановления балансирных валов весьма большой. Поэтому многие автомобилисты, когда система балансировки выходит из строя, предпочитают не ремонтировать ее, а просто удалять из двигателя.
Да, вибрация в таком случае становится немного больше, но подушки двигателя отлично справляются с ее гашением.
Вторая проблема, связанная с применением балансирных валов – это солидная потеря мощности. Использование этих валов снижает мощность мотора до 15 лошадиных сил, так как двигатель прикладывает больше усилий при вращении всех элементов. Это сказывается и на динамике мотора и на расходе топлива.
Поэтому, нужны ли вообще балансирные валы на автомобиле – это большой вопрос. Вполне реально придумать более совершенные системы гашения вибрации, но, видимо производители намеренно усложняют конструкцию двигателей, чтобы владельцы автомобилей чаще обращались в сервисные центры.
Mitsubishi Outlander 390 000 км › Бортжурнал › Установка ремня ГРМ и балансирных валов
Процедура ремня ГРМ — отлична расписана в книге по ремонту: www.autoprospect.ru/mitsu…mekhanizma-4g64-4g69.html поэтому не буду я указывать всех нюансов, а просто расскажу как и что было у меня! Мой личный совет — при замене ремня распечатайте инструкцию. Я распечатывал по указанной мною ссылке…
Сначала устанавливается ремень балансирных валов:
и согласно инструкции натягиваем ремень.
Далее устанавливаем новую шестеренку к/в:
Мой гидро-натяжитель — выглядит печально:
я его да же не стал проверять и просто купил новый:
Далее устанавливаем обводной и натяжной ролики и шестерню распред вала:
Вот что странно — я ремни, ролики, сальники — все покупал оригинал. Но все сальники разного цвета, а ролики да же разных фирм, вот например обводной koyo:
Такого способа упаковывать ремни я еще не видел:
Интересно сколько лет мой двигатель не видел такого ремня:
Главное не забыть проверить вал масляного насоса (второго балансира) — на правильность установки под боковым болтом блока:
Далее устанавливаем ремень — порядок такой: звездочка коленчатого вала и ролик натяжителя ремня привода ГРМ, потом на звездочку масляного насоса и на направляющий ролик ремня привода ГРМ и только затем на звездочка распределительного вала:
Процесс натяжки — весьма сложен, особенно по неопытности. Он отлично расписан в книге и я не стану повторяться. к слову — намучился я изрядно пока добился правильного натяжения, что бы после двух оборотов и 15 минут — гидронатяжитель стоял в с нужном значении…
Я не догадался купить инструмент для натяжного ролика (обычно на многих авто обходился без него — но здесь ни как не получалось). Покупать и ждать — уже не было времени. Поступил так: взял аналогичное устройство от ВАЗ, срезал его штырьки (редкое сырье) и просверлил два отверстия, в которые вставил два ранее подобранных по толщине сверла:
Все теперь можно собирать крышки. Верхнюю я решил поставить после запуска — что бы убедиться что все нормально, но об этом позже…
Нижнюю хотел купить новую, но ожидание — ужас… Заменю обязательно в следующий раз. На разборе — они в еще более худшем состоянии… А проблы у всех одинаковые — трещины, на некоторых протертости от роликов (как у меня) и дохлая уплотнительная резинка по краю, которая точно не справляется со своей задачей.
Резинку я эту удалил (высыпалась жесткими кусками) и хотел подобрать другую — но ни чего не подходило и я залил на ее место силиконовый герметик:
Сушил его несколько часов — что бы он не прилип к блоку намертво и установил:
Неисправности и ремонт
Как и все силовые агрегаты, 4G64 имеет ряд недоработок, которые проявляются на всей линейки выпуска. Рассмотрим, основные из них:
ГБЦ 4G64.
- Балансировочные валы. Недостаточная смазка может привести к заклиниванию валов, а соответственно оборвёт ремень ГРМ. Да здравствует ремонт головки. Рекомендуется заливать только качественное моторное масло и вовремя проводить техническое обслуживание.
- Вибрация мотора. Это значит, что износилась подушка мотора.
- Плавает холостой. В этом случае проблема может возникнуть в одном из узлов: форсунки, датчик температуры, грязная дроссельная заслонка и регулятор холостого хода.
Причины вибрации карданной передачи
- Люфт в подшипниках крестовин, превышающий допустимые значения. Устраняется эта неисправность, как и следующая за ней по списку, заменой пришедшей в негодность крестовины.
- Потеря подвижности игольчатых подшипников крестовин вследствие коррозии. Обнаружить этот дефект можно своими руками, если перед ремонтом отсоединить от фланцев трансмиссии крепление хотя бы одного торца карданной передачи и попытаться отвести освободившийся конец в сторону.
- Глубокие трещины в эластичной муфте. Ремонт заключается в замене этой детали.
- Несоосность крестовин после переделки карданного вала или из-за неправильной сборки узла с двумя крестовинами по краям и шлицевым соединением между ними. Для ремонта – восстановите соосность шарниров.
- Ослабление крепления фланцев кардана и редуктора моста.
- Раскручивание гайки крепления фланца к хвостовику редуктора.
- Неисправность подвесного подшипника.
- Чрезмерный люфт шлицевого соединения.
- Деформация трубы карданной передачи.
Принцип работы балансирных валов двигателя
Балансировочные валы это цельные металлические стержни цилиндрической формы. Они устанавливаются по два с одной стороны коленчатого вала. Между собой они соединены при помощи шестерен. Когда вращается коленвал, валы тоже вращаются, только в противоположные стороны и с большей скоростью.
На уравновешенных валах имеются эксцентрики, а в приводных шестернях установлены пружины. Эти элементы предназначены для компенсации инерции, которая возникает в КШМ. Балансиры приводятся в движение коленчатым валом. Пара валов всегда вращается в противоположном направлении друг от друга.
Устанавливаются эти детали в картере ДВС для лучшей смазки. Вращаются они на подшипниках (игольчатые или скольжения). Благодаря работе этого механизма детали двигателя не так сильно изнашиваются из-за дополнительных нагрузок от вибрации.
Коробка передач
Автоматическая коробка (АКПП), Радиатор АКПП, Гидроблок, Гидротрансформатор, Датчик АКПП, Декоративная накладка, Картер АКПП, Кронштейн АКПП, Мехатроник ДСГ, Поддон АКПП, Прокладка АКПП, Подушка АКПП, Ручка АКПП, Сальник АКПП, Соленоид АКПП, Термостат АКПП, Тормозная лента АКПП, Трос АКПП, Щуп АКПП, Механичаская коробка (МКПП), Масляный радиатор, Вторичный вал, Датчик коробки МКПП, Картер коробки МКПП, Кронштейн (крепление) МКПП, Кулиса, Первичный вал, Подушка коробки МКПП, Подшипник вторичного вала, Подшипник первичного вала, Привод спидометра, Прокладка коробки МКПП, Промежуточный подшипник, Ручка коробки МКПП, Рычаг переключения, Сальник вала, Сальник коробки МКПП, Синхронизатор, Трос коробки МКПП, Шестерня передачи, Вариатор CVT, Ремень вариатора
Эксплуатация балансировочных валов
Как уже было сказано ранее, основная причина поломки балансирных валов – естественный износ. Но автомобилист может предпринять несколько шагов, которые позволят продлить ресурс данного механизма.
- Первый шаг – не использовать агрессивный стиль вождения. Чем резче будет работать силовой агрегат, тем быстрее выйдут из строя шестерни валов. Кстати, это касается также массы других деталей автомобиля.
- Второй шаг – своевременное обслуживание. Замена масла и масляного фильтра обеспечит качественную смазку всех контактных элементов, а установка нового ремня (или цепи) привода позволит вращаться шестерням без дополнительных нагрузок.
5 / 5 ( 1 голос )
Вторичный гармонический балансир
Вторичный гармонический балансир Он был впервые применен в 1911 году Фредериком Ланчестером для балансировки четырехцилиндровых двигателей. Хотя это устройство оказалось весьма эффективным, в течение многих лет вместо демпфера применялись резиновые опоры, из соображений экономии. В 1975 году японская фирма Мицубиси стала производить вторичные балансиры сходные по принципу действия с балансиром Ланчестера. Они и в настоящее время выпускаются по лицензии различными компаниями, и двигатели, в которых используются эти устройства, обеспечивают гораздо более равномерную работу. На рис. 12.16 изображен принцип работы вторичного балансира. Два балансировочных вала со смещенными массами приводятся коленчатым валом с оборотами, равными удвоенным оборотам коленчатого вала.
Один балансировочный вал вращается по часовой стрелке, а другой — против часовой стрелки. Оба вала «синхронизированы» с коленчатым валом таким образом, что когда поршень находится в ВМТ, обе массы располагаются так, что вызывают появление направленной вниз силы. Для компенсации вторичных сил, приложенных к двигателю, балансир должен создавать противоположные силы только тогда, когда в этом есть необходимость. Для четырехцилиндровых двигателей с рядным расположением цилиндров это точки максимума, когда коленчатый вал находится в положениях 0°, 90°, 180° и 270°. На рис. 12.16а и с эти балансирующие силы направлены вниз и вверх, соответственно, тогда как на рис. 12.16b и d, две массы балансира располагаются друг против друга и их влияние взаимно нейтрализуется; в этих нейтральных положениях двигатель будет иметь статическую балансировку. Компания Мицубиси использует два балансировочных вала, причем один вал располагается над двигателем выше, чем другой (рис. 12.17).
Такое расположение валов обеспечивает кроме подавления вибрации в вертикальном направлении подавление вторичного момента вращения, который возникает, когда коленчатый вал вращается силой сгорающих газов. Верхний вал поворачивается в том же направлении, что и коленчатый вал, и вертикальное расстояние между валами составляет 0,7 длины шатуна. Расположенные таким образом балансировочные массы производят момент, противоположный моменту вращения. Балансировка вращающего момента не может быть получена во всем диапазоне нагрузок двигателя, поэтому положение валов выбирается так, чтобы минимизировать разбалансированный момент вращения на большинстве частот, близким к частотам тряски, создаваемой неровностями дороги. При таком расположении валов можно добиться балансировки четырехцилиндрового двигателя лучшей, чем у шестицилиндрового двигателя. В двигателе Порше (рис. 12.18) для привода балансировочных валов применен двусторонний зубчатый ремень. Разработчики утверждают, что применение балансировочной системы на этом двигателе уменьшает уровень шума на 20 дБ.
Минимизация вторичной вибрации, в особенности при высоких оборотах двигателя, обеспечивает уменьшение «гула», который ощутим и слышен в пассажирском салоне. Кроме того, при уменьшении вторичной вибрации увеличивается срок службы навесного оборудования двигателя, например, устройств уменьшения токсичности отработанных газов, электрооборудования, устройств системы подачи топлива и систем управления, включающих в себя электронные устройства.
назад >>
Балансирный вал двигателя
Балансирный вал двигателя, он же уравновешивающий вал — это деталь не простой конструкции, функция которой заключается в снижении вибрации двигателя.
Что такое балансирные валы
ДВС — это устройство сложной конструкции, основанной на преобразовании одной энергии в другую. Чем сложнее устройство, в данном случае, чем больше цилиндров имеет двигатель, тем сильнее создаются вибрации и колебания отдельных деталей, и двигателя целиком.
Цилиндры в ДВС располагаются по-разному:
- Рядная схема двигателя. Это такая, при которой оси цилиндров находятся в одной плоскости.
- Оппозитная схема. Оси цилиндров на противоположной стороне, то есть через 180 градусов.
- V-образная схема ДВС. Оси цилиндров в В-образных моторах располагаются в разных плоскостях.
Во всех двигателях существуют два вида сил:
- Уравновешенные. Уравновешенные силы — это сила давления, сила трения.
- Неуравновешенные. Неуравновешенные силы — это вес силового привода, сила инерции (то есть обратная сила).
В связи с тем, что двигатели не могут работать без вибрации, конструкторами была придумана деталь, которая сводит к минимуму повышенные значения вибрации и колебания.
Балансирный вал представляет собой цилиндрический стержень с имеющимися на нем пазами. Уравновешивающий вал гасит силы инерции второго порядка. Силы второго порядка в двигателе внутреннего сгорания не уравновешиваются путем установки дополнительных грузов на щека коленчатого вала. К силам первого порядка относится масса кривошипа, радиус его движения, угловая скорость и угол поворота. К силам второго порядка в ДВС относятся лямбда, то есть отношение радиуса кривошипа к длине шатуна.
Принцип работы балансирных валов
Балансирные валы устанавливаются парами, по разные стороны от коленвала с симметричным расположением. Насаживаются валы для балансировки на подшипники скольжения, которая обеспечивается смазкой мотора.
Коленчатый вал ДВС вращает балансирные валы. Один балансирный вал вращается в одну сторону, второй — в другую. Вращаются балансиры со скоростью, в два раза больше скорости вращения коленвала.
А знаете ли вы, что перенатяг дифференциала — это показатель динамики управления и проходимости по бездорожью.
Привод балансирных валов
Привод для балансирных валов делают таким образом, чтобы передаваемое усилие коленвалом балансирным валам осуществлялось через зубчатый редуктор или ременной передачи, или комбинированного привода (зубчатый редуктор+ременная передача).
Ремонт балансирных валов
Во время работы ДВС, установленные балансирные валы испытываются большие нагрузки. Самая большая доля нагрузки приходится на дальние подшипники, в связи с чем, больший износ балансировочных валов происходит в местах соединения с подшипниками и самих подшипников. Если нагрузки на балансирующие валы превышает допустимую, то слышны шумы, ДВС вибрирует сильнее, из-за чего, также, рвется цепь привода балансиров.
Полная съемка работы на видео в автосервисе. Работа по удалению балансировочных валов D4CB, автомобиль Хендай Гранд Старекс.
Стоимость ремонта балансирных валов дороговато, в разных автосервисах по-разному. Поэтому, многие автоводители, чтобы не покупать новые или не ремонтировать, просто демонтируют эти балансировочные валы и ставят заглушки в отверстиях корпуса.
Если использовать балансировочные валы в двигателе, то это усложняет конструкцию и повышает стоимость ремонта, а также приводит к уменьшению мощности ДВС, примерно, на 15 л.с.
Если балансирные валы изношены, то, как правило, уменьшается мощность двигателя и увеличивается время разгона. Это связано с тем, что при износе валов для балансировке нарушаются фазы, фазы газораспределения смещаются в сторону позже.
Как уменьшить вибрацию двигателя
Для уменьшения «пляски» и тряски двигателя необходимо настроить все узлы устройства на оптимальные режимы работы. Чтобы ДВС не вибрировал, сначала надой найти причины. Причиной вибрации может быть банальное ослабление крепежа ДВС.
Причин из-за которых двигатель автомобиля сильно вибрирует может быть много:
- подсос воздуха;
- неправильное поступление топлива;
- сбито зажигание;
- ослаблено крепление мотора;
- низкая компрессия;
- троение двигателя.
В этом видео рассмотрена одна из возможных причин вибрации
В этом видео показывается ликвидация вибрации за счет правильно выставленных меток, автомобиль Чери Тиго.
«Питер — АТ»
ИНН 780703320484
ОГРНИП 313784720500453