Что такое лямбда? 11-я буква греческого алфавита
Содержание:
- Разновидности лямбда-зондов
- Кодировки символов
- Наука и Греция
- Примеры расчета длины волны для звуковых, электромагнитных и радиоволн
- Период работы и выявление недостатков
- Истории автовладельцев.
- Строчная лямбда
- Диагностика по лямбда зонду
- Определение
- Лямбда-функция и сортировка списков
- ВЛИЯНИЕ НЕИСПРАВНОСТИ КИСЛОРОДНОГО ДАТЧИКА ЛЯМБДА: ПРИЧИНА ОТКАЗА
- Диагностика неисправностей для датчика кислорода Лямбда: основные принципы
Разновидности лямбда-зондов
Современные машины оснащаются следующими датчиками:
- Циркониевые;
- Титановые;
- Широкополосные.
Циркониевый
Одна из наиболее распространённых моделей. Создана на основе диоксида циркония (ZrO2).
Циркониевый датчик кислорода действует по принципу гальванического элемента с твёрдым электролитом в виде керамики из диоксида циркония (ZrO2)
Керамический наконечник с диоксидом циркония с обеих сторон покрыт защитными экранами из токопроводящих пористых платиновых электродов. Свойства электролита, пропускающего ионы кислорода, проявляются при нагреве ZrO2 выше 350°C. Лямбда-зонд не будет работать, не прогревшись до нужной температуры. Быстрый нагрев осуществляется за счёт встроенного в корпус нагревательного элемента с керамическим изолятором.
Выхлопные газы поступают к наружной части наконечника через специальные просветы в защитном кожухе. Атмосферный воздух попадает внутрь датчика через отверстие в корпусе или пористую водонепроницаемую уплотнительную крышку (манжету) проводов.
Разница потенциалов образуется за счёт передвижения ионов кислорода по электролиту между наружным и внутренним платиновыми электродами. Напряжение, образующееся на электродах, обратно пропорционально количеству О2 в выхлопной системе.
Статья в тему: Замена направляющих втулок клапанов
Напряжение, которое образуется на двух электродах, обратно пропорционально количеству кислорода
Относительно сигнала, поступающего от датчика, блок управления регулирует состав ТВС, стараясь приблизить её к стехиометрической. Напряжение, поступающее от лямбда-зонда, ежесекундно меняется по несколько раз. Это даёт возможность регулировать состав топливной смеси независимо от режима работы ДВС.
По количеству проводов можно выделить несколько типов циркониевых устройств:
- В однопроводном датчике существует единственный сигнальный провод. Контакт на массу осуществляется через корпус.
- Двухпроводное устройство оснащено сигнальным и заземляющим проводами.
- Трёх- и четырёхпроводные датчики снабжены системой нагрева, управляющим и заземляющим проводами к ней.
Циркониевые лямбда-зонды в свою очередь разделяются на одно-, двух-, трёх- и четырёхпроводные датчики
Титановый
Визуально похож на циркониевый. Чувствительный элемент датчика создан из диоксида титана. В зависимости от количества кислорода в выхлопных газах скачкообразно меняется объёмное сопротивление датчика: от 1 кОм при богатой смеси до более 20 кОм при бедной. Соответственно, меняется проводимость элемента, о чём датчик сигнализирует блоку управления. Рабочая температура титанового датчика — 700°C, поэтому наличие нагревательного элемента обязательно. Эталонный воздух отсутствует.
Из-за своей сложной конструкции, дороговизны и привередливости к перепадам температуры большое распространение датчик не получил.
Кроме циркониевых, существуют также кислородные датчики на основе двуокиси титана (TiO2)
Широкополосный
Конструктивно отличается от предыдущих 2 камерами (ячейками):
- Измерительной;
- Насосной.
В камере для измерений с использованием электронной схемы модуляции напряжения поддерживается состав газов, соответствующий λ=1. Насосная ячейка при работающем моторе на обеднённой смеси устраняет лишний кислород из диффузионного зазора в атмосферу, при богатой смеси — пополняет диффузионное отверстие недостающими ионами кислорода из внешнего мира. Направление тока для перемещения кислорода в разные стороны меняется, а его величина пропорциональна количеству О2. Именно значение тока и служит детектором λ выхлопных газов.
Температура, необходимая для работы (не менее 600°C), достигается за счёт работы нагревательного элемента в датчике.
Широкополосные датчики кислорода детектируют лямбду от 0,7 до 1,6
Кодировки символов
использует Unicode написание «lamda» в именах символов вместо «lambda» из-за «предпочтений, выраженных греческим национальным органом».
греческая лямбда / коптская лаула
предварительный просмотр | Λ | λ | ᴧ | Ⲗ | ⲗ | |||||
---|---|---|---|---|---|---|---|---|---|---|
имя Unicode | ГРЕЧЕСКАЯ ЗАГЛАВНАЯ БУКВА ЛАМДА | ГРЕЧЕСКАЯ СТРОЧНАЯ БУКВА ЛАМДА | ГРЕЧЕСКАЯ СТРОЧНАЯ БУКВА ЛАМДА | КОПТСКАЯ ЗАГЛАВНАЯ БУКВА LAULA | КОПТСКАЯ СТРОЧНАЯ БУКВА LAULA | |||||
Кодировки | десятичное | шестнадцатеричное | десятичное | шестнадцатеричное | десятичное | шестнадцатеричное | десятичное | шестнадцатеричный | десятичный | шестнадцатеричный |
Юникод | 923 | U+039B | 955 | U + 03BB | 7463 | U + 1D27 | 11414 | U + 2C96 | 11415 | U + 2C97 |
UTF-8 | 206155 | CE 9B | 206 187 | CE BB | 225 180 167 | E1 B4 A7 | 226 178150 | E2 B2 96 | 226 178 151 | E2 B2 97 |
Ссылка на цифровые символы | Λ | Λ | λ | λ | ᴧ | ᴧ | Ⲗ | Ⲗ | ⲗ | ⲗ |
Ссылка на именованный символ | Λ | λ | ||||||||
DOS Greek | 138 | 8A | 162 | A2 | ||||||
DOS Greek-2 | 182 | B6 | 229 | E5 | ||||||
Windows-1253 | 203 | CB | 235 | EB | ||||||
TeX | \Lambda | \ lambda |
Mathematical Lambda
Предварительный просмотр | 𝚲 | 𝛌 | 𝛬 | 𝜆 | 𝜦 | 𝝀 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Имя Unicode | MATHEMATICAL BOLD. CAPITAL LAMDA | MATHEMATICAL BOLD. МАЛЫЙ ЛАМДА | МАТЕМАТИЧЕСКИЙ ИТАЛИК. ЗАГЛАВНЫЙ ЛАМДА | МАТЕМАТИЧЕСКИЙ ИТАЛИК. МАЛЕНЬКИЙ ЛАМДА | МАТЕМАТИЧЕСКИЙ ЖИРНЫЙ ИТАЛИЧЕСКИЙ. КАПИТАЛЬНЫЙ ЛАМДА | МАТЕМАТИЧЕСКИЙ ЖИРНЫЙ ИТАЛИЧЕСКИЙ. МАЛЕНЬКАЯ ЛАМДА | ||||||
Кодировки | десятичный | шестнадцатеричный | десятичный | шестнадцатеричный | десятичный | шестнадцатеричный | десятичный | шестнадцатеричный | десятичный | шестнадцатеричный | десятичный | шестнадцатеричный |
Юникод | 120498 | U + 1D6B2 | 120524 | U + 1D6CC | 120556 | U + 1D6EC | 120582 | U + 1D706 | 120614 | U + 1D726 | 120640 | U + 1D740 |
UTF-8 | 240 157 154 178 | F0 9D 9A B2 | 240 157 155 140 | F0 9D 9B 8C | 240 157 155 172 | F0 9D 9B AC | 240 157 156 134 | F0 9D 9C 86 | 240 157 156 166 | F0 9D 9C A6 | 240 157 157 128 | F0 9D 9D 80 |
UTF-16 | 55349 57010 | D835 DEB2 | 55349 57036 | D835 DECC | 55349 57068 | D835 DEEC | 55349 57094 | D835 DF06 | 55349 57126 | D835 DF26 | 55349 57152 | D835 DF40 |
Ссылка на цифровые символы | 𝚲 | 𝚲 | 𝛌 | 𝛌 | 𝛬 | 𝛬 | 𝜆 | 𝜆 | 𝜦 | 𝜦 | 𝝀 | 𝝀 |
Предварительный просмотр | 𝝠 | 𝝺 | 𝞚 | 𝞴 | ||||
---|---|---|---|---|---|---|---|---|
Имя Unicode | MATHEMATICAL SANS-SERIF. BOLD CAPITAL LAMDA | MATHEMATICAL SANS-SERIF. BOLD ITALIC SMALL LAMDA | MATHEMATICAL SANS-SERIF. BOLD ITALIC CAPITAL LAMDA | MATHEMATICAL SANS-SERIF. BOLD ITALIC SMALL LAMDA | ||||
Кодировки | десятичное | шестнадцатеричное | десятичное | шестнадцатеричное | десятичное | шестнадцатеричное | десятичное | шестнадцатеричный |
Юникод | 120672 | U+1D760 | 120698 | U+1D77A | 120730 | U + 1D79A | 120756 | U + 1D7B4 |
UTF-8 | 240 157 157 160 | F0 9D 9D A0 | 240 157 157 186 | F0 9D 9D BA | 240 157 158 154 | F0 9D 9E 9A | 240 157 158 180 | F0 9D 9E B4 |
UTF-16 | 55349 57184 | D835 DF60 | 55349 57210 | D835 DF7A | 55349 57242 | D835 DF9A | 55349 57268 | D835 DFB4 |
Ссылка на цифровые символы | 𝝠 | 𝝠 | 𝝺 | 𝝺 | 𝞚 | 𝞚 | 𝞴 | 𝞴 |
Эти символы используются только как математические символы. Стилизованный греческий текст должен быть закодирован обычными греческими буквами с разметкой и форматированием для обозначения стиля текста.
Наука и Греция
Алфавит, изобретенный греками, основан на финикийской и древнегреческой азбуке. Его основная особенность заключается в содержании двух типов букв – согласных и гласных. Прошло более двух десятков веков, но алфавит сохранился.
В научной среде греческий алфавит занимает прочное место. Во многих отраслях знаний его буквы можно обнаружить в качестве обозначения некоторых показателей. В математике синус угла обозначается α, используется знак суммы Σ. В астрономии в названии самых крупных звезд ярких созвездий упоминается α (альфа Большого Пса). В биологии при изучении групп особей активно используются понятия омега-самка и альфа-самец. В разделе ядерной физики можно встретиться с понятиями гамма-частицы и альфа-излучения. На страницах учебников химии и физики в качестве постоянных величин фигурируют ρ и λ, которыми обозначают плотность материала и длину волны соответственно. О последней букве расскажем подробнее, то есть ответим на вопросы о том, как пишется лямбда, откуда берет происхождение и где применяется.
Примеры расчета длины волны для звуковых, электромагнитных и радиоволн
Задача №1
Скорость звука в воде 1450 м/с. На каком расстоянии находятся ближайшие точки, совершающие колебания в противоположных фазах, если частота колебаний равна 725 Гц?
Задача №2
Мимо неподвижного наблюдателя, стоящего на берегу озера, за 6 с. прошло 4 гребня волны. Расстояние между первым и третьим гребнями равно 12 м. Определить период колебания частиц волны, скорость распространения и длину волны.
Задача №3
Голосовые связки певца, поющего тенором (высоким мужским голосом), колеблются с частотой от 130 до 520 Гц. Определите максимальную и минимальную длину излучаемой звуковой волны в воздухе. Скорость звука в воздухе 330 м/с.
Период работы и выявление недостатков
Зная, как работает лямбда-зонд, можно без труда определить состояние этого агрегата в случае отклонения от нормы. В среднем, менять прибор нужно каждые 100 тыс. км пробега. Но порой замена элемента требуется уже через 50 тыс.
Быстрый выход из строя можно назвать особенностью этого агрегата. Так как кислородный датчик регулярно контактирует с газами, получившимися в результате горения топлива, это негативно сказывается на состоянии самого прибора.
Учитывая тот факт, что электронное управление автомобиля находится в тесной взаимосвязи с этим устройством, узнать о возникновении проблем с лямбда-зондом несложно. Если он вышел из строя, на экране появится соответствующая ошибка – загорится лампа Check Engine. Однако лампа может загореться и при выходе из строя иных запчастей, поэтому для моментального и максимального точного определения проблемы можно использовать специальный сканер. Пример — Scan Tool Pro Black Edition. Он подключается к электронному блоку и позволяет «считать» информацию о том, какие именно запчасти требуют срочного ремонта или замены.
Кроме основного признака, позволяющего определить неисправность этого прибора, есть и косвенные факторы. Среди них стоит упомянуть:
падение мощности двигателя в процессе нажатия на педаль газа. Нельзя считать появление этого признака свидетельством того, что лямбда-зонд вышел из строя. Иногда работа ДВС может быть нарушена банальным скачком в электросети, отсутствием достаточного уровня топлива, перегревом и иными факторами, которые можно исправить спустя некоторое время, дав автомобилю отдохнуть без движения;
снижение уровня чувствительности акселератора. Зачастую этот фактор проявляется одновременно с предыдущим признаком. Когда нажатие на газ осуществляется с задержкой, возможно, это связано со снижением уровня работы лямбда-зонда;
«скачки» на дороге, не связанные с наличием плохого дорожного полотна. Так называемое «рваное движение» — один из явных признаков того, что в работе системы ДВС есть определенные сбои. Также этот признак может указывать на проблемы с лямбда-зондом, который нужно менять каждые 50-150 тыс. км пробега.
Наличие одного признака не является гарантией, что ваш кислородный датчик вышел из строя. Но если все факторы имеют место быть, а также загорается лампочка электронного блока, с уверенностью 80% можно сказать, что следует посмотреть состояние лямбда-зонда.
Истории автовладельцев.
Так как лямбда-зонд является достаточно «коварным» датчиком, то с ним может быть связано немало проблем. Часто при повышенном расходе топлива автовладельцы считают, что причина заключается именно в КД. Ниже приведены три истории владельцев легкового транспорта, которые наглядно демонстрируют проблемы и их решения.
Алексей, пользователь автомобильного форума из Ростова, является обладателем автомобиля Mazda 3 с двигателем объемом 2,0 л. У него возникла проблема повышенного потребления топлива. Даже в спокойном режиме передвижения машина тратила по 15 литров на сотню километров. Также на приборной панели горел «чек» ошибки, свидетельствующий о неисправности лямбда-зонда, как считал водитель. Новый датчик для его автомобиля стоит от 10 тысяч рублей, и Алексей не был готов потратить такие деньги. Был вариант приобрести аналог детали марки BOSCH стоимостью 3 тысячи рублей, но он мог не подойти к автомобилю из-за сопротивления. Поэтому автовладелец начал искать другие методы решения проблемы. Он вспомнил, что полтора месяца назад начал заправлять авто на АЗС «Лукойл», после чего и загорелся «чек». Знакомый посоветовал добавить в бак присадку, которая повышает октановое число бензина. Но в магазине автовладельца отговорили от этого, потому что есть большой риск спалить клапана. Зато Алексею посоветовали приобрести чистящую присадку, которая также заливается в бак. Еще он проверил уровень масла и долило его до должного уровня. Бензин Алексей залил уже на другой заправке, после чего добавил присадку. Расход топлива снизился до 9,5 литров, а чек потух. Можно сделать вывод, что ошибка может возникать еще и из-за некачественного бензина, а не только из-за неисправностей выхлопной системы.
Вторую историю поведал Сергей, который приобрел с рук автомобиль Opel Vectra A 1989 года выпуска. Расход топлива был слишком большой и достигал 12 литров на 100 км. Так как горела лампочка Check engine, то было принято решение провести диагностику. Она показала неисправность лямбда-зонда. Сергей заменил кислородный датчик, это помогло, но лишь на две недели. После этого датчик снова пришел в негодность, и загорелся «чек». Автовладелец поставил уже «бэушный», чтобы не тратить много денег. Это также решило проблему ненадолго. Сергей начал искать более подробную информацию и выяснил, что ранее на Vectra A устанавливались двигатели другого типа, а как раз начиная с 1989 года, были внедрены новые моторы. Конструктивно они ничем не отличались, но в старых двигателях лямбда-зонд не был предусмотрен, и использовалась другая прошивка. Путем перепрошивки проблему удалось исключить, ведь блок управления теперь считал КД несуществующим.
Строчная лямбда
Строчная буква λ закрепилась и занимает прочное место в физических формулах алгебры, физики, химии, информатики. Удельная теплота плавления, постоянная распада, длина волны, значение Ламе, линейная плотность электрического заряда – это те переменные, которые для простоты заменены этим символом. В биологии изучается вирус фаг лямбда. В информатике функциональные выражения производят в λ-исчислении. В самолетостроении при удлинении крыла вводится буква лямбда. В линейной алгебре найденные корни дифференциального уравнения также обозначаются через нее.
Каждый современный автомобилист знаком с лямбда-зондом, установленным в его транспортном средстве. Прибор измеряет количество образуемого углекислого газа в выхлопе. Оснащение автомобиля данным датчиком произошло по причине того, что власти многих стран заботятся об экологической составляющей и здоровье нации и таким образом регулируют количество выделяемого автомобилем СО2. В случае критичности значения этого показателя, то есть его превышения относительно допустимой величины, в качестве жесткой меры выписывается штраф. Этот датчик также необходим для соблюдения оптимального и экономного расхода топлива.
Диагностика по лямбда зонду
Ведь он может нам многое рассказать о процессах в системе управления двигателем.
Пример №1.
Как я выше писал, лямбда зонд не учитывается во многих режимах работы двигателя. Это касается и разгона, так как в этот момент важна не стехиометрия, а тяговые характеристики двигателя, поэтому экология отбрасывается на задний план и ЭБУ льёт топлива столько, сколько необходимо для успешного разгона.
Но если логически подумать, то хоть лямбда зонд и не учитывается, но сигнал он вырабатывает и мы можем его увидеть.
Так как ЭБУ льет топливо от души, то лямбда зонд должен это показывать, поднявшись максимально вверх и оставаясь там, пока идет разгон. Как на этом графике
Если в Вашем случае лямбда зонд не висит вверху во время интенсивного разгона, как на графике выше, а, наоборот, падает вниз, значит двигателю не хватает топлива
В этом случае обращаем внимание на топливный насос, фильтр, форсунки и т.д. А лучше сразу замерить давление топлива
Пример №2
Это аналогичный пример, только наоборот. Также этот пример разрушает некоторые стереотипы, сложившиеся у людей после некорректного теоретического объяснения – как работает лямбда зонд.
Как объясняют работу лямбда зонда – “исправный датчик должен вырабатывать сигнал от 100 мВ до 900 мВ” Всё! А нужно примерно так – “исправный датчик должен вырабатывать сигнал от 100 мВ до 900 мВ на прогретом двигателе в режиме холостого хода или в режиме частичных нагрузок при установившихся оборотах двигателя”. Чувствуется разница?
Поэтому очень много раз приходилось отвечать на одни и те же вопросы – “Мой лямбда зонд выходит за пределы и опускается до нуля. Новый датчик ведёт себя также. Что делать?”, “Мой лямбда зонд периодически падает до нуля. Замена?”, “Лямбда зонд падает в 0. Это же не нормально?”
Причем, некоторые даже после ответа, что это нормально, всё равно не верят и меняют датчики. Ведь убеждение, что сигнал датчика может быть только 0.1В-0.9В, не позволяет принять реальность.
Вот пример графика, где лямбда зонд показывает 0
Я специально вывел режим работы двигателя. В режиме отсечки (принудительный холостой ход, торможение двигателем) ЭБУ довольно серьезно прикрывает форсунки (вплоть до полного закрытия) и, естественно, кислород в камере сгорания не сгорает. Поэтому лямбда зонд падает в ноль. Он практически не видит разницы между количеством кислорода в выхлопных газах и в окружающей среде.
Поэтому если в режиме отсечки сигнал лямбда зонда болтается где-то в верху, значит необходимо обратить на это внимание и разобраться в этом. Возможно какие-то форсунки не герметичны и огромное разрежение (посмотрите на показания ДАД) в режиме отсечки буквально высасывает топливо из них
А может просто прошлый хозяин автомобиля залил супер-пупер прошивку от очередного “гения калибровок”.
Пример №3
По второму лямбда зонду можно оценить работу катализатора. А также узнать, установлен ли он вообще.
Если сигнал второго лямбда зонда имеет практически ровную линию, то это значит, что катализатор работает
А если сигнал второго лямбда зонда имеет такой же вид, как и сигнал первого лямбда зонда, то это означает, что катализатор не работает либо отсутствует
Вот такие основные выводы можно сделать, посмотрев на графики сигнала лямбда зонда.
В конце отмечу ещё один важный момент. Если у Вас есть подозрения на неисправность лямбда зонда, то лучше посмотреть на его сигнал в режиме “Тест датчика кислорода”. Этот режим позволяет получить из блока управления двигателем только сигнал лямбда зонда. В чем смысл?
А смысл в том, что обмен между ЭБУ и диагностической программой происходит на довольно низкой скорости. И когда параметров очень много, то, естественно, это сказывается на скорости обмена ещё больше.
Поэтому этот режим позволяет вывести на экран только информацию, связанную с лямбда зондом.
Также желательно поднять обороты двигателя до 2000-3000 оборотов в минуту и анализировать график лямбда зонда аналогично приведенным выше примерам.
Всем Мира и ровных дорог!
По теме:
Определение
Удельной теплотой плавления называют физическую величину равную количеству тепла (в джоулях), которое необходимо передать твердому телу массой 1 кг, чтобы полностью перевести его в жидкое состояние. Удельную теплоту плавления обозначают греческой буквой «лямбда» – λ.
Формула удельной теплоты плавление выглядит так:
λ = Q/m
Где m – масса плавящегося вещества, а Q – количество тепла, переданное веществу при плавлении.
Зная значение удельной теплоты плавления, мы можем определить, какое количество тепла необходимо передать для тела с той или иной массой, для его полного расплавления:
Q = λ * m
Для разных веществ удельная теплота плавления была определена экспериментально.
Лямбда-функция и сортировка списков
Сортировка списка — базовая операция в Python. Если речь идет о списке чисел или строк, то процесс максимально простой. Подойдут встроенные функции и .
Но иногда имеется список кастомных объектов, сортировать которые нужно на основе значений одного из полей. В таком случае можно передать параметр в или . Он и будет являться функцией.
Функция применяется ко всем элементам объекта, а возвращаемое значение — то, на основе чего выполнится сортировка. Рассмотрим пример. Есть класс .
Теперь создадим экземпляры этого класса и добавим их в список.
Предположим, что мы хотим отсортировать его на основе поля сотрудников. Вот что нужно сделать для этого:
Лямбда-выражение было использовано в качестве параметра вместо отдельного ее определения и затем передачи в функцию .
ВЛИЯНИЕ НЕИСПРАВНОСТИ КИСЛОРОДНОГО ДАТЧИКА ЛЯМБДА: ПРИЧИНА ОТКАЗА
Существует несколько причин, по которым лямбда датчик может выйти из строя:
- Внутренние и внешние замыкания лямбда зонда.
- Нет заземления / напряжения.
- Перегрев зонда.
- Нагар / загрязнение.
- Механическое повреждение датчика
- Использование этилированного топлива / присадок
Существует ряд типичных неисправностей лямбда-датчиков, которые происходят наиболее. В следующем списке приведены причины неисправностей выявленных в результате диагностики:
Неисправности лямбда датчика | Причины |
Защитная трубка или корпус зонда забиты остатками масла | Несгоревшее масло попало в выхлопную систему, например, из-за неисправных поршневых колец или маслосъёмных колпачков |
Нет доступа к эталонному воздуху, воздух не поступает. | Зонд установлен неправильно, контрольное отверстие для воздуха заблокировано |
Повреждение в результате перегрева | Температура превысила 950 °C из-за неправильно выставленного зажигания или проблемы с регулировкой клапанов |
Плохое соединение на контактах | Окисление проводов датчика |
Обрыв проводки | Плохо проложенные провода, перетирание кабеля, укусы грызунов |
Отсутствие заземления | Окисление, коррозия в выхлопной системе |
Механические повреждения | При установке перетянут датчик. Момент затяжки превышен. |
Химическое старение | Частые непродолжительные поездки |
Свинцовые отложения | Использование этилированного топлива |
Диагностика неисправностей для датчика кислорода Лямбда: основные принципы
Автомобили, оснащенные системой самодиагностики, могут обнаруживать неисправности, возникающие в цепи управления, и сохранять их в памяти неисправностей. Обычно это отображается через индикаторную лампу двигателя — «чек», «check engine». Память неисправностей затем может быть считана с помощью сканера через разъём OBD-2. Однако некоторые системы не могут определить, относится ли эта неисправность к неисправному датчику или это неисправность кабеля. В таком случае дальнейшие испытания должны быть выполнены механиком в автосервисе.
Для более точной диагностики через EOBD, мониторинг при компьютерной диагностике лямбда-датчика был расширен, чтобы считывать следующие пункты диагностики:
- Разомкнутая цепь;
- Эксплуатационная готовность;
- Короткое замыкание на массу блока управления;
- Короткое замыкание на плюс;
- Обрыв кабеля и срок службы датчика кислорода лямбда.
Для диагностики сигналов от лямбда-датчика блок управления использует форму частоты сигнала. Для этого блок управления рассчитывает следующие данные:
- Максимальное и минимальное обнаруженное значение напряжения датчика кислорода;
- Время между положительным и отрицательным положением,
- Лямбда-контроллер, регулирующий соотношение в топливо-воздушной смеси — богатая или бедная;
- Определение порога лямбда-контроля,
- Напряжение датчика и длительность периода.
О чем говорят максимальные и минимальные напряжения датчика кислорода?
При запуске двигателя все старые максимальные / минимальные значения в электронном блоке управления удаляются. Во время работы минимальные / максимальные значения отображаются в определенном диапазоне нагрузки / скорости
Амплитуда напряжения датчика: максимальное и минимальное значение больше не достигается, обнаружение насыщенности / обеднения топливной смеси больше невозможно.
Время отклика на изменение напряжения
Если напряжение датчика превышает контрольный порог, начинается измерение времени реакции между положительным и отрицательным состоянием. Если напряжение датчика не достигает контрольного порога, измерение времени прекращается. Период времени между началом и концом измерения времени измеряется счетчиком.
Время отклика: если датчик реагирует слишком медленно на изменение состава смеси то не отображает состояние в нужное время.
Определение старого или загрязненного лямбда зонда
Кислородный датчик может быть неисправенесли он старый, выработал ресурс или загрязнен, например, присадками к топливу. Это можно определить при диагностике зонда. Сигнал лямбда зонда сравнивается с сохраненным шаблоном. Медленный зонд определяется как неисправность, например, через длительность периода сигнала.
Время отклика: частота зонда слишком низкая, оптимальное управление больше невозможно.