Автомобильный компрессор для кондиционера: схема и устройство, принцип работы, диагностика, неисправности и замена, топ-3 модели

Кондиционер для автомобиля

Принцип работы системы кондиционирования для автомобиля, нюансы их эксплуатации и управления часто интересуют автовладельцев. В основном их волнует, как работает кондиционер в автомобиле, как происходит процесс кондиционирования воздуха, для чего это нужно. Формирование и поддержка микроклимата в салоне происходит за счет регулировки температуры воздуха внутри автомобиля, во время работы установки уменьшается влажность, происходит очищение, устраняются неприятные запахи. Основные элементы и принцип действия автомобильного кондиционера такой же, как и у комнатного оборудования.

Очень важно знать, как работает кондиционер в машине, ведь микроклимат влияет на общее состояние водителя. При низкой температуре тело человека начинает переохлаждаться, при очень высокой, наоборот, происходит перегрев

В связи с этим возникает излишняя утомляемость, замедление реакции и другие влекущие за собой ошибки в вождении авто, которые могут привести к аварии.

Все типы кондиционеров могут создать оптимальную температуру для человека. В последнее время появились модели с ионизацией и увлажнением воздуха, которые благотворно влияют на состояние человека, но при условии, что за системой кондиционирования тщательно ухаживают. Не стоит забывать, что кондиционеры необходимо чистить и регулярно производить ремонт.

Устройство и принцип работы

Кондиционер – это довольно сложная система замкнутого типа.

Для того чтобы понять то, как она устроена, стоит для начала рассмотреть в отдельности каждый элемент:

  • Компрессор наиболее сложный элемент системы. В первую очередь он предназначен для того, чтобы произвести сжатие хладагента и превращение его в газ высокой температуры. Работа компрессора автомобильного кондиционера обеспечивается при помощи ремня через электромагнитную муфту.
  • Конденсатор – или если говорить проще – алюминиевый радиатор кондиционера, именно внутри его происходит превращение газа в жидкое вещество. Как правило, радиатор оснащается электрическими вентиляторами, которые обеспечивают регулирование температуры посредством обдува. Дополнительно стоит отметить, что радиатор является одной из самых уязвимых частей всей системы. Он не только плохо переносит разного рода механические воздействия, но и может выйти из строя просто в результате интенсивной эксплуатации.
  • Испаритель. Представляет собой алюминиевый теплообменник, в котором происходит преобразование хладагента из жидкого состояния в газообразное. Располагается испаритель непосредственно в салоне транспортного средства там же, где расположен радиатор печки.
  • Расширительный клапан. Небольшой, но весьма важный элемент, от которого напрямую зависит-то, сколько хладагента поступит в испаритель а, следовательно, именно от этого клапана будет зависеть производительность системы в целом. Если говорить проще, то этот маленький клапан отвечает за температуру в салоне.
  • В отдельных случаях вместо расширительного клапана может использоваться расширительная трубка, которая фактически выполняет ту же задачу, но при этом имеет немного другую конструкцию. Применение расширительного клапана или расширительной трубки зависит исключительно от конструкции конкретной системы.
  • В случае если в системе автомобильного кондиционера используется расширительная трубка, то в конструкции также будет присутствовать так называемый аккумулятор-осушитель, который выполняет функцию осушения и фильтрации хладагента.

Стоимость замены компрессора кондиционера автомобиля составляет примерно 3-5 тысяч рублей

Система автомобильного кондиционирования предусматривает два способа управления температурой воздуха в салоне:

  • Ручное управление, при котором водитель вручную с помощью специальных органов управления меняет температуру воздуха в салоне. При этом на процесс работы кондиционера будет влиять достаточно много факторов, таких как скорость автомобиля, температура окружающей среды, обороты на которых работает мотор и т. д.
  • Более совершенной считается автоматическая система управления. В блоке управления необходимо задать нужную температуру, а дальше электроника сама подстроится под требования водителя. Для этого автоматическая система оснащается несколькими датчиками температуры, электронным блоком управления, а также рядом достаточно сложны заслонок, клапанов и т. д.

Как разобрать компрессор кондиционера

Демонтаж компрессора на разных марках машин проходит в ином порядке. Но когда деталь уже на верстаке, переборку делайте по такой схеме:

  1. Очистите узел от грязи.
  2. Отсоедините провода электромуфты.
  3. Открутив центральную гайку, снимите приводной шкив (нужен удерживающий спецключ).
  4. Снимите диск сцепления (примените универсальный съемник).
  5. Удалите стопорное кольцо, удерживающее подшипник шкива.
  6. Трехпалым съемником стяните шкив с подшипником с компрессора.
  7. Удалите стопорное кольцо, которым удерживается электромагнит муфты.
  8. Снимите электромагнит.
  9. Перед вами сам компрессор. Открутите болты передней крышки – она отойдет от корпуса.
  10. Извлеките крышку с валом, выньте опорный подшипник и его нижнюю обойму.
  11. Извлеките поршневую группу, опорный подшипник и седло.
  12. Снимите пружину и шпонку.
  13. Переверните деталь, открутите крепежи задней крышки компрессора.
  14. Обнаруженную прокладку выкиньте: ее нужно будет заменить.
  15. Снимите клапанный диск и уплотнитель под ним.


Как разобрать компрессор кондиционера

Теперь вам осталось разобрать крышку с валом. Вытаскивайте по порядку: пылезащитное и стопорное кольца, шпонку, вал с подшипником

Теперь важно не потерять детали

Порядок работы системы

Перенос тепла происходит циклически по мере прохождения рабочего тела через все участки системы кондиционирования.

Компрессор нагнетает давление в своей выходной магистрали, фреон сжимается до уровня в 10-15 атмосфер, его температура возрастает. Чем больше энергии приобретает газ в компрессоре, тем выше общая эффективность системы. Именно эта энергия будет затем отобрана, что вызовет понижение температуры в области салонного расширителя.

Для сброса энергии в виде тепла при сохранении давления газ сразу после компрессора поступает в радиатор-конденсатор. Здесь он интенсивно обдувается забортным воздухом, имеющим в любом случае более низкую температуру. По мере охлаждения газ проходит точку росы при данном давлении и переходит в жидкое фазовое состояние, одновременно очищаясь в фильтре.

После радиатора хладоагент попадает на вход дросселирующего управляемого клапана. На нём имеется значительный перепад давления, что вызывает интенсивное закипание жидкой фазы с образованием газа низкой температуры. Давление падает практически до атмосферного, а температура снижается до отрицательной величины. Рабочее тело готово к попаданию в испаритель кондиционера.

Салонный радиатор, через который проходит холодный фреон, обдувается вентилятором и принимает на себя тепло воздуха. Температура в салоне уменьшается, что и требуется от системы кондиционирования. В процессе охлаждения из воздуха конденсируется влага, удаляемая через дренажные трубки и отверстия. Автоматика не позволит работать при чрезмерно низкой температуре окружающего воздуха, что не даст обмерзать поверхности испарителя, препятствуя нормальному теплообмену.

Далее охлаждённый газ низкого давления проходит через регулирующий клапан, предоставляя ему информацию о производительности системы, после чего вновь попадает на вход компрессора, замыкая цикл.

Типы, конструкция и характеристики компрессоров

В настоящее время существует два принципиально разных конструктивных типа компрессоров:

  • Поршневые (одно- и двухцилиндровые);
  • Мембранные.

Поршневой компрессор — это классическое и наиболее распространенное решение. В данном типе компрессоров сжатие и нагнетание воздуха осуществляется поршнем, совершающим возвратно-поступательные движения в цилиндре.

Основу компрессора составляет цилиндро-поршневая группа (ЦПГ) небольшого объема (десятки кубических сантиметров), поршень приводится в движение через кривошипно-шатунный механизм от электрического двигателя.

ЦПГ может быть выполнена цельной или составной — иметь раздельный блок (с картером или без) и головку. В головке устанавливается клапанный механизм (впускной и выпускной клапаны), а также штуцеры для подключения воздушного шланга и манометра.

В большинстве своем поршневые компрессоры не имеют ресивера, так как для накачки колес в нем нет необходимости. Однако на рынке можно встретить и модели с ресиверами — такие компрессоры можно использовать не только в качестве насоса, но и для решения других задач.

Мембранный компрессор имеет более простую конструкцию — его основу составляет емкость, закрытую гибкой мембраной, которая может совершать возвратно-поступательные движения. Привод мембраны — через кривошипно-шатунный механизм от электрического двигателя. В емкости предусмотрен клапанный механизм и штуцеры для подключения воздушного шланга и манометра.

Оба типа компрессора, несмотря на разницу в конструкции, имеют одинаковый принцип действия. Работа любого компрессора происходит в два такта:

  • Первый такт — впуск. Впускной клапан в открытом состоянии, выпускной — в закрытом. При движении поршня или мембраны от верхней мертвой точки к нижней мертвой точки в цилиндр за счет падения давления поступает порция воздуха из атмосферы;
  • Второй такт — выпуск. Впускной клапан закрыт, впускной клапан открыт. При движении поршня или мембраны от нижней мертвой точки к верхней мертвой точки воздух частично сжимается и под давлением поступает в колесо.

Тип компрессора легко определить по его внешнему виду. В поршневом компрессоре можно выделить две отдельных детали — цилиндр (или головку) и корпус электрического двигателя. Цилиндр обычно имеет оребрение, которое обеспечивает охлаждение (нагрев происходит за счет сжатия воздуха и вследствие трения поршня о стенки цилиндра).

Мембранные компрессоры обычно имеют круглый корпус (в виде цилиндра небольшой высоты), а по размерам они могут быть значительно меньше поршневых.

Сегодня наибольшее распространение получили поршневые компрессоры, мембранные же встречаются довольно редко. Причина тому проста: поршневые устройства могут нагнетать воздух под давлением 7-10 атмосфер (серьезные аппараты развивают и более значительное давление), а мембранные едва обеспечивает давление 3-4 атмосферы.

Также мембранные компрессоры имеют меньшую производительность — не более 15-18 л/мин, в то же время самые простые поршневые компрессоры имеют производительность 20-40 л/мин, а более серьезные устройства могут нагнетать до 70-100 и более литров воздуха в минуту. Поэтому мембранные компрессоры выигрывают у поршневых лишь в габаритах, но с поршневым накачать колесо можно в два-три раза быстрее.

Независимо от типа, все компрессоры оснащаются манометром для контроля давления в колесе. Также обязательно предусмотрен воздушный шланг (обычный или удлиненный и свернутый в пружину). Питание компрессоров может быть двух типов:

  • От прикуривателя;
  • Непосредственно от клемм аккумулятора.

Также возможны различные дополнительные функции и возможности: наличие плавкого предохранителя, встроенный фонарь, различные переходники, наличие на штуцере клапана дефлятора (он предлагает возможность быстрого выпуска воздуха из колеса), электронная или механическая защита от перегрева и другие. В большинстве своем компрессоры имеют сумки или кейсы для переноски и хранения.

Технические требования к монтажу блоков

Существует ряд правил по выбору места для установки блоков кондиционера, но нюансы не всегда указываются в инструкциях и технической документации оборудования, хотя имеют очень важное значение при эксплуатации. Существующие расчеты для систем кондиционирования воздуха предполагают обязательное соблюдение ряда параметров при установке. Так, для внутреннего блока необходимо соблюдать следующие параметры:

Так, для внутреннего блока необходимо соблюдать следующие параметры:

  • расстояние от верхней крышки внутреннего блока кондиционера до потолка, для обеспечения нормального всасывания воздуха, должно быть не менее 15 см;
  • расстояние до угловой стены, к которой примыкает блок кондиционера – не менее 30 см;
  • расстояние до возможного препятствия движению выдуваемого внутрь помещения воздуха – не менее 1,5 метра.

Несоблюдение этих технических параметров может привести к нарушению нормального функционирования кондиционера и повышению потребляемой мощности.

Также недостаток воздушных масс, поступающих для охлаждения, может привести к нестабильной работе и поломке внутреннего блока кондиционера.


Установка кондиционеров в многоквартирных домах самостоятельно на самом деле законодательством не разрешена. Существующие нормы федеральных законов, гражданского и жилищного кодекса обязывают согласовывать момент установки кондиционеров с жильцами дома, с управляющей компанией, с органами исполнительной власти

Что касается бытовых правил установки внутреннего блока кондиционера, то при выборе места, куда будет направлен поток холодного воздуха, нужно исключить вероятность постоянного нахождения там человека.

Холодный воздух не должен поступать на место для отдыха (диван, кровать) и место для работы (компьютерный или письменный стол). Иначе не избежать постоянных болезней из-за продувания холодным воздухом.

Для установки внешнего блока требуется соблюдение следующих параметров:

  • расстояние от задней стенки внешнего блока до стены здания не меньше 10 см, иначе будет затруднен «захват» внешнего воздуха;
  • соблюдать достаточное расстояние от земли (при установке кондиционеров на первых этажах или в частных домах), чтобы исключить попадание в блок снега, грязи, воды;
  • устанавливать на расстоянии не менее 1 метра от газовых труб;
  • обеспечить не менее 1 метра свободного пространства для выдувания воздуха вентилятором.

Наружный блок кондиционера необходимо установить на внешней стене здания, примыкающего к своей квартире. Также следует исключить расположение блока на стене соседней квартиры. В случае необходимости обеспечить внешний блок специальным козырьком – это нужно для недопущения падении сосулек в зимний период времени на блок кондиционера.

Важно при расположении наружного блока учесть возможность свободного доступа к нему для проведения технического обслуживания. Установка внешнего блока кондиционера на первых этажах должна быть выполнена с соблюдением условий беспрепятственного прохождения пешеходов возле стен дома. Также стоит оградить специальной решеткой для предотвращения воздействия на блок вандалов

Также стоит оградить специальной решеткой для предотвращения воздействия на блок вандалов


Установка внешнего блока кондиционера на первых этажах должна быть выполнена с соблюдением условий беспрепятственного прохождения пешеходов возле стен дома. Также стоит оградить специальной решеткой для предотвращения воздействия на блок вандалов

Стоит отметить, что на заре массового монтажа кондиционеров в многоквартирные дома считалось, что наружный блок нужно устанавливать ниже внутреннего. Этот миф был основан на том, что именно так будет обеспечиваться постоянная смазка маслом компрессора наружного блока (иначе масло якобы собирается во внутреннем блоке).

С точки зрения расположения внешнего и внутреннего блоков определяющим параметром считается расстояние между ними. Установленные рамки – от 1 до 6 метров, но производителем могут обозначаться конкретные параметры, которые стоит неукоснительно соблюдать.

При превышении предельно допустимого расстояния (более 6 метров) придется дополнительно закачать фреон в систему, а при расположении менее метра необходимо сформировать из трубки кольцо для обеспечения необходимого метража.

Более подробно вопрос правильного выбора оптимального места для установки кондиционера мы рассмотрели в другой нашей статье.

Промывка и чистка компрессора кондиционера автомобиля

В замкнутую систему не проникают пыль и влага. Но такое случается:

  • кондиционер может разгерметизироваться, тогда внутрь попадает грязь;
  • поршни изнашиваются, стружка начинает циркулировать по контуру;
  • владелец дозаправил неправильное масло, оно вступило в реакцию с рабочей жидкостью, образовались хлопья.

В перечисленных случаях нужно промыть и почистить климатическую технику.

Простому автолюбителю делать это не стоит по нескольким причинам:

  • нет необходимого оборудования;
  • не каждый знает сложнейшую технологию чистки узла;
  • можно отравиться токсичными веществами разложения фреона.

Оцените свои возможности, отгоните машину в автомастерскую.

Оборудование и инструменты для заправки

Из этих компонентов нужно собрать прибор для заправки системы кондиционирования.

Порядок действий должен быть таким:

Возьмите фреоновый баллон и прикрутите к нему переходник с краном (на верхушке баллона должна быть резьба);
Подсоедините к переходнику шланг;
Прикрепите шланг к станции для измерения давления;
К станции для контроля давления с другой стороны присоедините еще один шланг с переходником;
Заправочный прибор готов

Обратите внимание, что в некоторых магазинах продаются уже собранные приборы.. Также в ряде случаев вам могут понадобиться дополнительные приборы – если вы будете делать вакуумирование, то вам понадобится вакуумный насос, если вы будете проверять целостность труб давлением, то в таком случае вам придется купить баллон с безопасным газом и так далее

Также в ряде случаев вам могут понадобиться дополнительные приборы – если вы будете делать вакуумирование, то вам понадобится вакуумный насос, если вы будете проверять целостность труб давлением, то в таком случае вам придется купить баллон с безопасным газом и так далее.

Выбор фреона

Более старые установки работали на фреоне R12, однако в девяностые годы произошел запрет этой смеси из-за ее негативного влияния на окружающую среду, а после запрета в кондиционерах стала применяться смесь R134a. Для заправки автокондиционера требуется порядка 700 -1000 г смеси.

Кондиционер автомобиля — типичное исполнение компрессоров

Наряду с разнообразными схемными решениями, применительно к построению систем автомобильного кондиционирования воздуха используются разные по типу исполнения холодильные компрессоры. Рассмотрим некоторые конструкции компрессоров, которые встречаются достаточно часто.

Типичное исполнение #1: компрессор спирального типа (фирма Sanden)

Компрессор производства японской фирмы Sanden для автомобильного кондиционера отличает уникальная конструкция на две спирали. Одна спираль неподвижная, другая подвижная.

Обе спирали, между тем, обладают промежуточными свойствами. Подвижная спираль способна вращаться (колебаться) и соединена с входным валом через концентрический подшипник.

Холодильный компрессор Sanden кондиционера автомобиля: 1 – выпускной клапан; 2 – область давления нагнетания; 3 – подвижная спираль; 4 – неподвижная спираль; 5 – муфта ротора сцепления; 6 – передний нажимной диск сцепления; 7 – катушка возбуждения; 8 – область давления всасывания

Когда подвижная спираль колеблется внутри неподвижной спирали, между спиралей образуется множество карманов. По мере того, как размеры этих карманов уменьшаются в размере, хладагент сжимается, давление увеличивается и отводится через геркон выпускного отверстия задней области компрессора.

Типичное исполнение #2: компрессор переменного хода (Harrison V5)

Компрессор холодильный Delphi (Harrison) V5 представляет собой нециклический аппарат с переменным рабочим объёмом. Рабочий объём машина изменяет в зависимости от производительности, удовлетворяя потребности системы кондиционирования в любых условиях эксплуатации.

Компрессор такой конструкции имеет вихревую пластину с изменяемым углом в аксиально-поршневой конструкции с пятью (V5) цилиндрами. Смещение контролируется сильфонным управляющим клапаном, расположенным в задней головке цилиндров.

Конструкция холодильного компрессора Delphi (Harrison) V5: 1 – подвижная пластина, изменяющая положение под некоторым углом в процессе работы аппарата; 2 — стержень

Сильфонный регулирующий клапан определяет и реагирует на давление всасывания системы (требование системы кондиционирования). Посредством регулирования давления в картере, угол качающейся пластины и, следовательно, смещение компрессора изменяются.

Давление нагнетания компрессора намного выше давления в картере, где уровень давления чуть больше или равен давлению всасывания. При максимальном смещении, давление в картере равно давлению всасывания компрессора. При уменьшенном или минимальном смещении, значение давления в картере превышает значение давления всасывания.

Типичное исполнение #3: компрессор ротационный лопастной (Panasonic)

Ротационные лопастные компрессоры отличаются наличием в составе конструкции ротора с тремя или четырьмя лопастями. Когда вал компрессора вращается, лопасти в контакте с корпусом машины фактически образуют рабочие камеры.

Фреон R134a втягивается через всасывающее отверстие в область такой камеры. По мере вращения вала, рабочая область камеры уменьшается. Разгрузочный порт расположен в точке, где газообразный фреон сжат до максимальной степени. Герметичное пролегание лопастей по стенкам корпуса ротора обеспечивается центробежной силой и смазочным маслом.

Ротационный лопастной компрессор автомобильного кондиционера (фирма Panasonic): 1 – разгрузочный порт; 2 – масляный насос; 3 – масляный поддон; 4 – тело ротора; 5 – лопасть; 6 – муфтовое сцепление; 7 – выпускной клапан

Масляный поддон и масляный насос расположены на стороне нагнетания, так что высокое давление проталкивает масло через масляный насос. Затем на масло подаётся на основание лопаток, тем самым создаётся герметично установленный контакт по отношению к корпусу ротора.

Иногда, после длительного простоя кондиционера допускается появление кратковременного шума лопастей сразу после запуска машины. Этот момент обусловлен временным недостатком смазочного масла, проходящего через систему кондиционирования.

Уплотнения, гибкие шланги и сервисные порты

Резиновая смесь, применяемая для изготовления уплотнительных колец:

  • соединений,
  • фитингов,
  • компонентов системы кондиционирования,

используемых с фреоном R134a, представляет собой гидрированный бутадиен-нитрильный каучук (HNBR — Hydrogenated Nitrile Butadiene Rubber).

Резина на основе этой смеси, имеет зелёный оттенок. Смазка уплотнительных колец выполняется посредством минерального масла.

Кондиционер автомобильный — шланги специальные резиновые

Все шланги и трубки, входящие в комплект кондиционера автомобильного, предварительно смазываются. Также подлежат смазыванию уплотнительные кольца, поставляемые в качестве запасных. Другие производители могут использовать уплотнительные кольца другого цвета и размера.

Следует убедиться, что для типа обслуживаемой или ремонтируемой системы используются подходящие уплотнительные кольца. Нельзя использовать уплотнительные кольца под фреон R12 в системе, где заправлен фреон R134a.

Подмена непременно приведёт к повреждению уплотнительных колец по причине отсутствия хлора в составе фреона R134a. Между тем допустимо применять уплотнительные кольца для фреона R134a в системе с фреоном R12.

Гибкие резиновые шланги автомобильного кондиционера: A – под хладагент R12; B – под хладагент R134a; 1(A) – каучуковый нитрил; 1(B) – нейлон; 2(A) – армирование; 2(B) – каучуковый нитрил; 3(A) – резина; 3(B) – армирование; 4 — резина

Гибкие резиновые шланги под фреон R134a и R12 также имеют некоторые отличия. Шланги для хладагента R134a отличаются наличием нейлоновой внутренней облицовкой.

Благодаря такой облицовке, практически полностью исключена утечка хладагента, которая естественным образом происходит по причине пористой структуры резиновых шлангов.

Шланги под фреон R134a имеют меньший наружный диаметр и более тонкие стенки, обеспечивая лучшую гибкость и снижение уровня шума в системе кондиционирования. Нельзя использовать шланги под хладагент R12 в системе кондиционирования на фреоне R134a.

Масло типа PAG и водород, присутствующие в составе хладагента R134a, приводят к быстрому износу обычных нитриловых шлангов для фреона R12. Плюс к этому шланги под хладагент R12 обычно имеют больший наружный диаметр, что способствует увеличению уровня шума.

Кондиционер автомобильный — сервисные порты системы

Сервисные порты для зарядки фреоном устанавливаются:

  • на шланги,
  • на трубки,
  • на фильтры-осушители.

Эти порты зарядки позволяют обслуживать и тестировать систему кондиционирования непосредственно под давлением. Порты разных размеров определяют верхнюю и нижнюю стороны системы кондиционирования.

Пластиковая крышка с резиновым уплотнением используется для закрытия отверстия зарядного порта и предотвращения утечки. Специальная конструкция зарядного клапана разработана для соответствия зарядным портам R134a.

Клапаны Шредера допускают некоторую утечку, поэтому должны закрываться пластиковыми защитными колпачками. Клапаны Шредера, предназначенные для R134a, должны использоваться только в системах на R134a.

При помощи информации: AriaZone

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *