Принцип работы и особенности турбонаддува на бензиновых и дизельных двигателях: 3 преимущества турбины

Признаки того, что турбина «умирает»

Выход турбины из строя во многих случаях происходит очень быстро, причин тому несколько: это может быть, как уже упоминалось, недостаток масла, попадание твердыми частицами по колесу компрессора и по колесу ротора турбины, также к поломке может привести ДТП

Однако чаще турбонагнетатель приходит в негодность постепенно, и у автовладельца есть время обратить внимание и принять необходимые меры по устранению причин поломки либо обратиться к специалистам

Выделяется несколько наиболее распространенных признаков выхода из строя турбины. К ним относятся следующие:

  • наличие посторонних шумов со стороны турбины во время работы силовой установки (свист либо гул);
  • появление сизого дыма из выхлопной системы;
  • резко увеличивается расход масла;
  • падает давление наддува.

Для определения поломок на ранних стадиях, достаточно внимательно слушать свой автомобиль. Например, у машины упала мощность или она утратила динамику, это говорит о том, что турбина не создает достаточного давления.

Иногда причиной тому служит повышенное противодавление из-за сильного загрязнения катализатора. Также к этому могут привести и неисправности электромагнитного клапана (управляющего вакуумом турбины), что тоже влечет понижение мощности двигателя.

Если же эти элементы работают исправно, тогда стоит проверить перепускную заслонку или изменяемую геометрию. Часто при агрессивном стиле езды поток отработанных газов идет мимо клапана, либо поврежденная изменяемая геометрия, цепляет корпус турбокомпрессора и не направляет воздух на колесо турбины. В таком случае коэффициент полезного действия турбины сильно падает. Если таким образом выявить причину поломки не удалось, тогда потребуется демонтаж турбокомпрессора с силовой установки.

На скорый выход из строя турбину и возможный признак дефекта может также указать дым из выхлопной системы.

Основные признаки неисправности турбины двигателя автомобиля

Плохое ускорение

Если вы заметили замедленную реакцию со стороны двигателя при разгоне, очень вероятно, что турбокомпрессор сломан, так как это один из самых распространенных признаков. Это связано с отходами турбо, а также проблемами с системой подачи топлива. Однако во всех случаях, если ускорение замедляется, рекомендуется обратиться за специализированной помощью в сервисный центр.

Громкий свистящий звук

Турбокомпрессор не только увеличивает мощность двигателя и снижает уровень вредных выбросов, но и делает его тише, поскольку заглушает звук всасываемого воздуха. Однако если вы слышите громкий свистящий звук, исходящий от двигателя, это признак того, что турбонагнетатель не работает должным образом. Как правило, чем громче шум, тем серьезнее проблема, и ее причины включают повреждение крыльчатки компрессора, обрыв вакуума, сломанные шланги или плохие настройки ЭБУ.

Повышенный расход топлива

Еще одно преимущество использования турбонагнетателя — повышенная топливная эффективность. Поэтому, если вы заметили, что расход топлива вашего автомобиля значительно увеличился, вам следует обратиться к механику. Этот симптом может быть вызван множеством проблем, в том числе утечкой в ​​турбонагнетателе, из-за которой топливо попадает в выхлоп.

Система рециркуляции отработавших газов

Система внешней рециркуляции отработавших газов (EGR) является эффективным средством снижения температуры в камере сгорания. Го­рячие отработавшие газы отводятся и охлажда­ются в охладителе системы EGR до температуры ниже 150 °С. Затем они смешиваются со све­жим воздухом и подаются в камеру сгорания. Уменьшение количества кислорода в свежей смеси и высокая теплоемкость рециркулирую­щих отработавших газов вследствие наличия в них составляющих Н2O и СO2 приводит к обра­зованию зоны горения, температура в которой, в зависимости от скорости рециркуляции от­работавших газов, снижена на несколько сотен градусов Цельсия. Благоприятными эффектами являются снижение содержания в выбросах ок­сидов азота NOх, а также снижение тепловых потерь и температуры компонентов цилиндра. Основной целью является снижение содержа­ния в отработавших газах токсичных продуктов.

Проблема, которую необходимо решить, заключается в транспортировке отработав­ших газов к стороне впуска свежего воздуха. Системы рециркуляции отработавших газов обычно применяются на двигателях с тур­бонаддувом. При этом имеют место два раз­личных подхода (рис. «Система рециркуляции отработавших газов (система EGR)» ). В случае системы рециркуляции отработавших газов низкого давления отработавшие газы отбираются по­сле прохождения через турбину, охлаждаются и снова подаются в воздушный компрессор. В случае системы рециркуляции отработавших газов высокого давления, которая, в частно­сти, предотвращает загрязнение компрессора и воздействие на него высоких тепловых на­грузок, рециркуляция отработавших газов осуществляется через сторону высокого дав­ления. При этом между сторонами впуска и выпуска должен поддерживаться надлежащий перепад давления, иначе возникает ухудшение условий протекания цикла заряда. Иногда ис­пользуются также флаттерные клапаны, т.е. клапаны, воспринимающие пульсации давления и открывающиеся только в случае превышения определенного порога давления на стороне выпуска отработавших газов.

Применение системы EGR

Системы EGR низкого давления уже нашли применение на легковых и коммерческих автомобилях и продолжают совершенство­ваться. Их привлекательными особенностями являются меньший неблагоприятный перепад давления (разность давлений на выходе из турбины и на входе воздушного компрессора). Однако, во избежание загрязнения компрессора такие системы требуют установки впускного фильтра твердых частиц. Следует также отметить более высокие тепловые нагрузки, которым подвергается компрессор.

РЕКОМЕНДУЮ ЕЩЁ ПОЧИТАТЬ:

Пример HTML-страницы

Масло

Также масло выполняет функцию охлаждения системы на элементы, температура которых, во время работы, достигает больших величин. Эффективность охлаждения турбины в основном зависит от типа двигателя, на котором она установлена.

Двигатели, зажигание в которых является искрового типа, имеют самую оптимальную конструкцию для хорошей эффективности сопротивлению нагревания турбоустановки.

Это достигается благодаря расположению данного элемента вблизи системы понижения температуры двигателя, и вхождение его основного корпуса напрямую в эту систему.

Центробежный компрессорный агрегат дает возможность создания давления объема выхлопных газов, которое является дополнительным. Конструктивное устройство его не многим отличается от подобного механического нагнетателя.

В его состав входят: выплавленный из алюминия диск, на поверхности которого располагаются лопасти и стальной корпус. Воздушный поток входит через центр колеса и выходит сквозь отверстие, также расположенное в центральной зоне.

Кинетическая энергия преобразовывается силу нагнетания воздушного потока с помощью резкого понижения его скорости.

Устройство турбонаддува

Турбина двигателя, работающего на бензине, состоит из таких элементов:

  1. Корпус подшипников, размещающий в себе ротор с валом и кольцами с лопастями. Вращаясь, они перенаправляют воздух в цилиндры.
  2. Каналы, проходящие через весь корпус. Их функция заключается в доставке масла к вращающимся и трущимся друг о друга элементам, что способствует увеличению срока их службы.
  3. Подшипник скольжения, гарантирующий плавную работу ротора, смазываемого и охлаждаемого маслом.
  4. Корпус, по форме чем-то напоминающий улитку, защищающий составные элементы механизма от механических повреждений.

Что из себя представляет турбина

Если сказать проще, то турбина – это механическое устройство автомобиля для подачи под давлением воздуха в камеру сгорания. Главная задача, которую выполняет турбонаддув, это значительное повышение мощности двигателя без увеличения его рабочего объема. Установка турбины обеспечивает пятидесятипроцентный, а иногда и больше, прирост мощности силового агрегата при сравнении с нетурбированными двигателями того же объёма. Это обусловлено нагнетанием под давлением турбиной воздуха в цилиндры и повышением содержания кислорода в топливной смеси, а в результате и увеличению ее эффективности.

Конструктивно турбина состоит из механической крыльчатки приводимой в действие движением выхлопных газов автомобиля. То есть используется энергия выхлопа для захвата и подачи воздуха (а соответственно и кислорода) в систему для улучшения качеств топливной смеси. С технологической точки зрения на сегодня это наиболее эффективное устройство для увеличения мощности двигателя при том же расходе топлива, что позволило уменьшить выброс токсичных газов в атмосферу.

Такие агрегаты нашли широкое применение как в дизельных силовых установках, так и на бензиновых двигателях. При этом в первом случае турбированные моторы оказались наиболее эффективны из-за высокой степени сжатия и малым, при сравнении с бензиновыми автомобилями, числом вращения коленчатого вала.

К тому же ограниченное применение турбонаддува на бензиновых машинах обусловлено возможным проявлением детонации, которое возникает при резком увеличении числа оборотов двигателя, а также из-за высокой температуры выхлопных газов, достигающего тысячи градусов против шестисот у дизельных моторов. Естественно такие температуры могут привести к повреждению частей турбины.

Преимущества и недостатки турбированного двигателя

В последнее время продажи машин, оснащённых турбированными моторами, значительно выросли. Автолюбители же разделились на два лагеря: тех, кто не признаёт необходимости установки компрессора, в частности в бензиновых моторах, предпочитая классику, и тех, кто любит ветер инноваций, считая, что атмосферникам пора на пенсию. И те, и другие по-своему правы, поэтому, определяясь с покупкой авто, нужно тщательно взвесить все плюсы и минусы турбированного бензинового мотора или дизеля, а также учесть и прочие факторы, определяющие целесообразность приобретения.

Преимущества турбодвигателей очевидны:

  • повышенные характеристики мощности при таком же объёме;
  • компактность и малый вес агрегата;
  • высокий крутящий момент, начиная с самых низких оборотов, демонстрирующий стабильность;
  • небольшой расход топлива относительно мощностных характеристик;
  • меньший объём выхлопов.

Минусы турбированных двигателей в следующем:

  • при высокоскоростной езде расход топлива повышен;
  • необходимость прогрева двигателя в морозы;
  • наличие «турбоям» (явление провала мощности при резком нажатии на педаль газа характерно для старых конструкций агрегатов);
  • сильный нагрев;
  • дороговизна ремонта;
  • чувствительность к топливу и смазочным материалам низкого качества, как следствие – зависимость ресурса от используемых средств;
  • периодичность замены масла, а также масляного и воздушного фильтров чаще, чем у атмосферников;
  • высокая стоимость обслуживания, вызванная необходимостью использования только высококачественных рабочих жидкостей.

Для многих водителей недостатки турбированных двигателей значительно перевешивают преимущества. Особенно пугают затраты и необходимость постоянного контроля состояния, а также щепетильность в уходе, что связано со сложностью конструкции агрегата. Надёжность атмосферников уже никто не ставит под сомнение, тогда как в случае с моторами, оснащёнными наддувом, ресурс целиком и полностью зависит от владельца.

Почему турбина на дизеле практически вечная?

Если сравнить турбину на бензиновом двигателе и взять средний пробег 90000-120000 км. и обычную турбину с дизельного мотора с пробегом 250000 км.а то и более.Работа турбины на бензине и на дизеле практически идентична. У турбины есть горячая часть и холодная.Горячая часть работает на энергии выхлопных газов которые идут с выпускного коллектора и раскручивает эту часть турбины. Она валом соединена с холодным компрессорным колесом которое раскручивается до высоких оборотов и нагнетает воздух в цилиндры двигателя. Берёт воздух с окружающей среды. За счёт этого воздушно топливной смеси у нас становится больше и растёт мощность двигателя.

Так почему дизельные турбины ходят дольше?

  • Это температура выхлопа.У бензина она составляет 800-900 градусов Цельсия , а у дизеля 500-600 градусов Цельсия. (Это в среднем.) Потому что КПД дизельного двигателя намного больше и энергия от сгоревшей смеси идет в работу, а у бензинового идёт на нагрев. Чем выше температура выхлопных газов тем сильнее разогревается турбина и масло которое смазывает подшипники ( втулки) может пригорать как в каналах так и в подшипниках. Поэтому смазка турбины будет происходить намного хуже и турбина может полностью за коксоваться и масло перестанет поступать. Масло не только смазывает но и отводит излишнюю температуру. Так как у бензинового движка температура выхлопа выше, значит турбина выходит из строя раньше срока. А на дизеле температура выхлопа ниже и турбина чувствует себя лучше.
  • Обороты двигателя.У бензина мотор работает в среднем 4000-6000 об. мин. А дизель в среднем 1500-2000 об. мин. Соответственно когда идёт выхлоп у бензинового двигателя то выхлопных газов проходит через турбину больше и турбина раскручивается быстрее. У дизеля обороты меньше и выхлоп не такой интенсивный и турбина раскручивается не так быстро как на бензине. Меньше оборотов больше ресурс турбины.У бензинового агрегата турбина развивает 100000-150000 об. мин. А дизеля показатели намного меньше. На бензине ставят клапана для сброса давления чтобы турбину не разорвало. На дизеле они тоже есть но дизель работает на меньших оборотах.
  • Масло.База у бензинового масла и у дизельного практически одинаковая. Но дизель работает на тяжёлом топливе и при сгорании образуется много серы. Сера твёрдое вещество и при оседании на деталях выступает в роли абразива. Поэтому в дизельное масло добавляют соответствующие мощные присадки для удаления серы и возможность держать в себе не давая оседать на трущихся деталях. А у бензинового масла таких присадок нет. Значит дизельное масло лучше смазывает турбину отводит окисления,серу и не пригорает, отводит тепло.
  • Интервалы замены масла.У дизельных моторов масло нужно менять чаще. Примерно 5000-7000 км. На бензине 8000-10000 км. Значит на дизеле масло чище и намного лучше смазывает турбину и поэтому турбина работает дольше на дизеле.

Преимущества турбокомпрессора.

  1. Оснащенный турбокомпрессором двигатель имеет экономические и технические преимущества в сравнении с атмосферным (безнаддувным) давлением
  2. Двигатель с турбокомпрессором имеет более высокую массу и мощность чем атмосферный двигатель
  3. Двигатель с турбокомпрессором не такой огромный, как атмосферный, с той же мощностью

Кривая крутящего момента двигателя оснащенным турбокомпрессором, лучше адаптируется к специфическим условиям эксплуатации. Это, например, когда водитель огромного и тяжелого грузового автомобиля значительно реже переключает передачи на дороге горной местности, плюс само вождение будет более “мягким”.

Также отметим, что на базе атмосферных двигателей можно производить версии, оснащенные турбокомпрессором, которые будут отличаться по мощности.

  1. Турбокомпрессор, укомплектованный в двигатель обеспечивает лучшее сгорание топлива. И это подтверждает уменьшение потребления топлива грузовиками на больших пробегах
  2. Улучшая сгорание, турбокомпрессор уменьшает выброс токсичности отработавших газов
  3. Двигатель с турбокомпрессором работает намного стабильнее своего атмосферного аналога такой же мощности, и издает меньше шума
  4. Турбокомпрессор для двигателя и всей системе сгорания выступает как определенный глушитель в системе выпуска

Ремонт турбокомпрессоров (ремонт турбин).

Современный турбокомпрессор – высокотехнологическое устройство, следовательно, и ремонт турбин представляет собой сложную задачу, которая требует у мастеров внимательности, аккуратности, технических навыков с использованием качественных материалов.

Если Вы заметили какие-либо неполадки на своей технике, связанные с турбинным оборудованием, то вам необходимо моментально проконсультироваться у специалиста, мастера, и предпринять соответствующие меры.

Здесь главная задача мастера – определить все причины, содействующие проблемам с турбиной. Быстро и эффективно разобраться в неполадках, и решить их, заказав ремонт турбины.

Что касается причин, которые содействуют выходу турбокомпрессора из строя, то их может быть много. Например, значительно высокая температура отработавших газов, большая частота вращения вала и другие.

Также повредить турбину можно обычными (естественными) причинами неисправностей, не задавая больших нагрузок на двигатель:

  1. Масляная недостаточность
  2. Загрязнение масла химическими элементами
  3. Загрязненный воздушный фильтр
  4. Перегрев турбокомпрессора
  5. Иные предметы, попавшие в улитку компрессора или механической турбины

Определяя и убирая все эти причины, и возможные другие, ремонт турбокомпрессоров и диагностика проходит следующим образом:

  1. Разбирается все оборудование, детали тщательно очищаются и моются от смазки
  2. Проводится дефектация, поиск трещин и признаков износа турбин
  3. Проводятся ремонтные токарно-слесарные работы
  4. Устанавливаются новые комплектующие на турбокомпрессор
  5. Балансируется ротор вала и турбина, затем собирается, и проводится диагностика на утечку масла
  6. По окончании, устанавливается улитка и чугунка

Проделывая весь вышеперечисленный комплекс мероприятий по ремонту турбокомпрессоров можно ремонтировать турбинное оборудование любой сложности: для легковых и грузовых автомобилей, автобусов, сельскохозяйственной, строительной техники и т.д. главное производить ремонт в заводских условиях .

Качественный ремонт турбин практически невозможен без качественного спецоборудования.

Балансировка – один из самых важных и основных моментов в ремонте турбокомпрессора, без проведения этой операции или проведения некачественной балансировки, ремонт можно считать недействительным.

Ремонт турбин для легковых и грузовых автомобилей, микроавтобусов, спецтехники необходимо производить опытными, квалифицированными специалистами в области гидрооборудования. К ремонту турбокомпрессора необходимо прилагать гарантийный талон, и обязательно инструкцию по установке и эксплуатации.

В конце отметим, что любой турбокомпрессор или механическая турбина нуждаются в определенном обслуживании. А именно, всегда нужно следить за смазкой всего оборудования. Потому, как недостаток масла обычно приводит к сильному износу, а то и выхода из строя запчастей.

Частые и основные признаки неисправности

– это черный или синеватый дым из выхлопной трубы, сокращенная мощность двигателя, увеличенный расход моторного масла или шум при работе турбокомпрессора.

На двигателе, который отлично работает, вовремя и качественно обслуживается, турбокомпрессор может безотказно работать в течение многих лет. Следовательно, не будет необходимости задумываться про ремонт турбокомпрессоров на своей технике на протяжении долгого времени.

Турбо-яма

Минусом работы турбированного агрегата, является такое явление как «турбо-яма» (подробнее здесь). При низких оборотах турбина раскручивается не сильно, а поэтому не способна нагнетать большое количество воздуха. Если вы резко давите на педаль газа — то нужно какое-то время чтобы отработанные газы дошли до крыльчатки турбины и раскрутили ее! Однако пройдет немного времени, 1 – 2 секунды, прежде чем произойдет «выстрел» динамики.

В народе это явление называется турбо-ямой, то есть прежде чем резко ускориться, нужно подождать 1 или 2 секунды, пока раскрутится турбина.

Конечно, сейчас есть такое понятие как «ТВИН-ТУРБО» или «БИ-ТУРБО» – к обычной турбине подсоединяют еще одну, как правило – механическую (а с недавнего времени и электрическую), которая работает на низких оборотах, нагнетая нужное количество воздуха на низах, затем когда обороты вырастают, включается основная. Таким образом, турбо – яма побеждается.

Как работает турбонаддув дизельного двигателя

Ротор турбины и крыльчатка компрессора жестко закреплены на одном валу. Таким образом, скорость вращения ротора передается крыльчатке. Круг замыкается:

  • Через компрессор воздух из атмосферы, смешиваясь с топливом, подается в цилиндры двигателя;
  • Смесь сгорает, приводя в движение поршни, и образовавшиеся в результате газы поступают в выпускной коллектор;
  • Здесь они принимаются в корпус турбины, разгоняются в канале и на выходе взаимодействуют с ротором, заставляя его вращаться;
  • Ротор через вал передает вращение крыльчатке компрессора, которая всасывает в корпус атмосферный воздух.

Получается взаимосвязанная схема работы, когда количество всасываемого воздуха зависит от скорости вращения крыльчатки и, наоборот, крыльчатка вращается быстрее при большем количестве забираемого воздуха.

Принцип работы турбонаддува имеет два момента, называемые турбоямой и турбоподхватом.

Первый момент характеризуется задержкой в работе турбины после увеличения подачи топлива нажатием на педаль газа, так как для разгона ротора выхлопными газами требуется время.

Вслед за турбоямой наступает момент турбоподхвата, когда разогнавшийся ротор резко увеличивает подачу воздуха в цилиндры, повышая мощность двигателя.

Принцип действия турбонаддува

Система турбонаддува использует энергию газов, которые образуются при сгорании топлива. Газы обеспечивают вращательные движения колеса турбинного типа, которое в свою очередь запускает компрессорное колесо, отвечающее за сжатие и нагнетание воздушной массы в систему. Далее происходит охлаждение воздуха при помощи интеркулера и подача его в цилиндры.

Очевидно, что хотя турбонаддув механически никак не связан с коленвалом двигателя, однако его работа и ее эффективность находится в прямой зависимости от скорости вращения коленчатого вала. Чем выше обороты двигателя, тем эффективнее работает турбонаддув.

Несмотря на свою практичность и эффективность, система турбонаддува имеет некоторые недостатки. Ключевым из них является появление турбоям – задержка в увеличении мощности ДВС.

Подобное явление проявляется вследствие инерционности системы – задержки в увеличении давления наддува при достаточно резком нажатии на газ, что может привести к разрыву между требуемой мощностью двигателя и производительностью турбины.

Как работает турбонаддув в машине

Энергия отработанных выхлопных газов в двигателе направляется на турбинное колесо нагнетателя, которое под воздействием газов вращается в своем корпусе, имеющем особую форму для улучшения кинематики прохождения выхлопных газов.

Температура здесь весьма высока, а потому корпус и сам ротор турбины вместе с ее крыльчаткой выполняются из жаропрочных сплавов, способных выдерживать длительное высокотемпературное воздействие. Также в последнее время для этих целей используются керамические композиты.

Компрессорное колесо, вращаемое за счет энергии турбины, осуществляет всасывание воздуха, его сжатие и последующее нагнетание в цилиндры силового агрегата. При этом вращение компрессорного колеса также производится в отдельной камере, куда попадает воздух после прохождения через воздухозаборник и фильтр.

Как турбинное, так и компрессорные колеса, как уже говорилось выше, жестко закрепляются на роторном валу. При этом вращение вала производится с помощью подшипников скольжения, которые смазываются моторным маслом из основной системы смазки двигателя.

Подача масла к подшипникам производится по каналам, которые располагаются непосредственно в корпусе каждого подшипника. Для того, чтобы герметизировать вал от попадания масла внутрь системы, используются специальные уплотнительные кольца из жаростойкой резины.

Безусловно, основной конструктивной сложностью для инженеров при проектировании турбонагнетателей является организация их эффективного охлаждения. Для этого в некоторых бензиновых моторах, где тепловые нагрузки наиболее высоки, нередко применяется жидкостной охлаждение нагнетателя. При этом корпус, в котором расположены подшипники, включается в двухконтурную систему охлаждения всего силового агрегата.

Еще одним важным элементом системы турбонаддува является интеркулер. Его предназначением выступает охлаждение поступающего воздуха. Наверняка многие из читателей этого материала зададутся вопросом о том, зачем охлаждать «забортный» воздух, если его температура и так невелика?

Ответ кроется в физике газов. Охлажденный воздух увеличивает свою плотность и, как результат, возрастает его давление. При этом конструктивно интеркулер представляет собой воздушный либо жидкостный радиатор. Проходя через него, воздух снижает температуру и увеличивает свою плотность.

Важной деталью системы турбонаддува автомобиля выступает регулятор давления наддува, представляющий собой перепускной клапан. Он применяется с целью ограничить энергию отработавших газов двигателя и направляет их часть в сторону от колеса турбины, что позволяет регулировать давление наддува

Привод клапана может быть пневматическим или электрическим, а его срабатывание осуществляется за счет сигналов, получаемых от датчика давления наддува, которые обрабатываются блоком управления двигателем автомобиля. Именно электронный блок управления (ЭБУ) подает сигналы на открытие или закрытие клапана в зависимости от данных, получаемых датчиком давления.

Помимо клапана, регулирующего давление наддува, в воздушном тракте непосредственно после компрессора (где давление максимально) может монтироваться предохранительный клапан. Целью его использования является защита системы от скачков давления воздуха, которые могут быть в случае резкого перекрытия дроссельной заслонки двигателя.

Избыточное давление, возникающее в системе, стравливается в атмосферу с помощью так называемого блуофф-клапана, либо направляется на вход в компрессор клапаном типа bypass.

Советы по уходу и эксплуатации турбированного двигателя

В обслуживании двигателей с турбонаддувом много нюансов, которые необходимо учитывать в процессе эксплуатации, если есть желание продлить ресурс мотора и турбины:

Двигатель, который постоянно работает на пределе своих возможностей, быстро изнашивается, поэтому не стоит постоянно топить педаль газа, если вы не являетесь участником автогонок. К тому же агрессивная езда увеличивает расход топлива

Чтобы продлить срок службы мотора, управлять авто с турбонаддувом следует в умеренном режиме.
Важно соблюдать периодичность замены масла в двигателе и ни в коем случае не допускать масляного голодания. Интервалы могут быть значительно сокращены ввиду сложных условий эксплуатации

При замене масла нужно менять также фильтры.
В случае с турбонаддувом экономия на смазочных материалах неуместна, потому как может привести впоследствии к более значительным растратам на ремонт. Необходимо использовать масла, рекомендуемые производителем агрегата, не применяя аналоги и не смешивая различные сорта.
Нужно использовать также высококачественное горючее, поскольку низкосортное содержит различные примеси и засоряет топливную систему, сокращая ресурс.
Во время эксплуатации в морозы рекомендуется предварительно дать поработать агрегату на холостых оборотах, чтобы обеспечить циркуляцию смазки. В особенности не следует пренебрегать этим правилом в случае с дизелем.
При запуске двигателя не стоит долго удерживать педаль газа, поскольку это вынудит турбину работать на холостых оборотах, что снижает её ресурс. Это обусловлено тем, что в агрегатах с наддувом высокое давление обеспечивается уже на низких оборотах.
Нельзя резко глушить дизель и бензиновый двигатель с наддувом. Движок нужно некоторое время (достаточно даже пары минут) подержать на холостом ходу, это обеспечит равномерное снижение температуры, поскольку на высоких оборотах она поднимается до максимума. Резкое выключение провоцирует перепад температур, что влечёт за собой сильный износ турбины, почему и нельзя сразу глушить турбированный двигатель. Некоторые модели по этой причине имеют турботаймер, контролирующий процесс, он глушит двигатель через время после выключения зажигания.

Разобравшись, как правильно эксплуатировать автомобиль с мотором, снабжённым турбиной, и ухаживать за ним, необходимо также привыкнуть к особенностям управления, тогда сложностей в обслуживании не будет, а риски поломки сведутся к минимуму. Правильный уход и соблюдение правил эксплуатации позволят значительно продлить жизнь сердцу автомобиля.

Турбонаддув с использованием отработавших газов

В системах турбонаддува с использованием отработавших газов некоторая часть энергии отработавших газов преобразуется в механи­ческую энергию, необходимую для привода нагнетателя при помощи турбины (турбонаг­нетателя отработавших газов). Таким образом, этот процесс использует некоторую часть энтальпии, которая на безнаддувных двигателях остается неиспользованной. Однако эти си­стемы вызывают увеличение противодавле­ния отработавших газов. Для сжатия воздуха в таких системах используются исключительно гидрокинетические компрессоры.

Рис. «Сравнение кривых мощности и крутящего момента двигателей без наддува и с турбонаддувом»

Турбонагнетатели отработавших газов обычно применяются для создания высокого давления наддува даже при низких частотах вращения коленчатого вала двигателя. Другими словами, турбина турбонагнетателя рассчитана на среднюю частоту вращения. При этом следует учитывать, что при высоких частотах вращения давление наддува может возрастать до уров­ней, которые вызовут чрезмерные нагрузки на двигатель. Поэтому турбина снабжается пере­пускным клапаном, который при определенной частоте вращения начинает пропускать часть потока отработавших газов мимо турбины. При этом энергия этих отработавших газов остается неиспользованной. Значительно более удовлет­ворительные результаты (т.е. высокое давление наддува в нижнем диапазоне оборотов и в то же время возможность избежать перегрузки в верхнем диапазоне) могут быть получены при использовании турбонагнетателя с изменяемой геометрией турбины (VTG). В этих системах за счет изменения положения направляющих ло­паток осуществляется регулирование сечения потока и угла атаки рабочих лопаток (и, таким образом, давления отработавших газов, посту­пающих на турбину) (см. «Турбо­нагнетатели»).

Преимущества турбонаддува с использованием отработавших газов:

  • Значительное увеличение выходной мощ­ности на литр рабочего объема;
  • Значительное снижение расхода топлива по сравнению с двигателями без наддува равной мощности;
  • Снижение содержания токсичных продук­тов в отработавших газах;
  • Сравнительно небольшой занимаемый объем;
  • Может быть использован совместно с си­стемами рециркуляции отработавших га­зов низкого давления.

Недостатки турбонаддува с использованием отработавших газов:

  • Установка турбокомпрессора в тракте с «горячими» отработавшими газами требует применения термостойких материалов;
  • Повышенная тепловая инерция в системе выпуска отработавших газов;
  • Без принятия дополнительных мер сравни­тельно низкий пусковой крутящий момент в случае установки на двигателях с малым рабочим объемом.

Специальные виды турбонаддува

В электрифицированных системах турбонаддува используется дополнительный электродвигатель, приводящий во вращение турбонагнетатель при отсутствии потока отработавших газов. Преиму­щество такой системы заключается в обеспече­нии турбонаддува в переходных режимах работы двигателя и при низких частотах вращения. Эти системы пока что не нашли применения в серий­ном производстве автомобилей ввиду их большой сложности и высокой потребляемой электриче­ской мощности. Применение электрифицирован­ных систем турбонаддува позволит значительно уменьшить занимаемый системой объем.

Еще один специальный вид турбонаддува — системы турбонаддува с использованием энер­гии волн сжатия, которые пока что не нашли применения в серийном производстве. Принцип действия основан на отражении волн сжатия во вращающемся секционном роторе (см. «Нагне­татели и турбонагнетатели»). Основным преи­муществом является очень высокое быстродей­ствие, обеспечивающее быстрое нарастание крутящего момента в переходных режимах. Од­нако применение таких систем связано с высо­кими затратами, а необходимость в отдельном приводе создает проблему нахождения соответ­ствующего свободного пространства.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *