Классификация двигателей автомобилей
Содержание:
- Области применения электродвигателей
- Классификация двигателей по различным основаниям
- Октановое число топлива
- Виды электродвигателей: классификация
- Сравнение характеристик внешне коммутируемых электрических двигателей
- Какие бывают двигатели в автомобиле
- Классификация двигателей внутреннего сгорания
- Расчет объема цилиндра двигателя советы, объяснения, формулы
- Принцип работы
- Дизельные двигатели
- Виды двигателей
- Алюминиевый кузов
- Дополнительные компоненты двигателя
- Классификация двигателей автомобилей
- Четырехтактный ДВС
- Преимущества и недостатки
Области применения электродвигателей
Электродвигатели являются крупнейшими потребителями электроэнергии в мире, на них приходится около 45% от всей потребляемой электроэнергии .
- Электродвигатели используются повсеместно, основные области применения:
- промышленность: насосы, вентиляторы, компрессоры, конвейеры, движущая сила для других машин и др.
- строительство: насосы, вентиляторы, конвейеры, лифты, системы отопления, вентиляции и кондиционирование воздуха и др.
- потребительские устройства: холодильники, кондиционеры, персональные компьютеры и ноутбуки (жесткие диски, вентиляторы), пылесосы, стиральные машинки, миксеры и др.
ЭД1 | Функции | Области применения |
---|---|---|
Вращающиеся электродвигатели | Насосы | Системы водоснабжения и водоотведения |
Системы перекачки охлажденной или нагретой воды, системы отопления, ОВК2, системы полива | ||
Системы канализации | ||
Перекачка нефтепродуктов | ||
Вентиляторы | Приточно-вытяжная вентиляция, ОВК2, вентиляторы | |
Компрессоры | Системы вентиляции, холодильные и морозильные установки, ОВК2 | |
Накопление и распределение сжатого воздуха, пневматические системы | ||
Системы сжижения газа, системы перекачки природного газа | ||
Вращение, смешивание, движение | Прокатный стан, станки: обработка металла, камня, пластика | |
Прессовое оборудование: обработка алюминия, пластиков | ||
Обработка текстиля: ткачество, стирка, сушка | ||
Смешивание, взбалтывание: еда, краски, пластики | ||
Транспорт | Пассажирские лифты, эскалаторы, конвейеры | |
Грузовые лифты, подъемные краны, подъемники, конвейеры, лебедки | ||
Транспортные средства: поезда, трамваи, троллейбусы, автомобили, электромобили, автобусы, мотоциклы, велосипеды, зубчатая железная дорога, канатная дорога | ||
Угловые перемещения (шаговые двигатели, серводвигатели) | Вентили (открыть/закрыть) | |
Серво (установка положения) | ||
Линейные электродвигатели | Открыть/закрыть | Вентили |
Сортировка | Производство | |
Хватать и перемещать | Роботы |
Примечание:
- ЭД — электродвигатель
- ОВК — системы отопления, вентиляции и кондиционирование воздуха
Классификация двигателей по различным основаниям
Различные критерии, дают возможность сгруппировать типы моторов.
1. Применение мотора:
- моторы, относящиеся к стационарному типу, используются на электрических станциях малой и средней мощности, для обеспечения работоспособности насосов, а также распространены в сельскохозяйственных агрегатах;
- как видно из названия транспортные силовые установки, нашли своё применение в различных наземных, воздушных, а также водных транспортах.
2. По виду применяемой топливной смеси:
- лёгкие виды горючего (бензиновые, бензольные, керосиновые, лигроиновые, спиртовые);
- тяжёлые виды горючего;
- газовые силовые установки (генераторные, природные газы);
- смешанные виды горючего; первичное горючее — газ, для старта мотора применяют жидкое горючее;
- использующие разное горючее.
3. По типу преобразования энергии:
- поршневые моторы;
- газотурбинные установки;
- моторы комбинированного типа.
4. По типу образования смеси:
- внешнее образование смеси;
- внутреннее образование смеси.
5. По типу воспламенения топливной смеси:
- моторы с искровым воспламенением;
- установки с воспламенением от давления;
- устройства с форкамерно — факельным воспламенением;
- моторы с газожидкостным воспламенением.
6. В зависимости от конструкции выделяют:
- моторы поршневого типа, они подразделяются на: вертикальные; горизонтальные; V-образные; звездообразные; противолежащими цилиндрами.
- моторы роторно-поршневого типа, делятся на: а. двигатели в которых ротор планетарно движется внутри корпуса. Во время движения, между ротором и корпусными стенками возникают камеры с переменным объёмом, внутри этих камер происходит цикл. Это наиболее распространённая схема; б. моторы в которых вместо ротора планетарно движется корпус, а сам ротор остаётся неподвижным; в. установки, в которых корпус и ротор вращательно движутся — бироторные двигатели.
7. По типу охлаждения выделяют:
- с жидкостной охладительной системой;
- с воздушной охладительной системой.
Октановое число топлива
Энергия передаётся на коленчатый вал двигателя от расширяющихся газов во время рабочего хода. Сжатие топливо-воздушной смеси до объёма камеры сгорания повышает эффективность работы двигателя и увеличивает его КПД, но увеличение степени сжатия также увеличивает вызываемое сжатием нагревание рабочей смеси согласно закону Шарля.
Если топливо легковоспламеняемое, вспышка происходит до достижения поршнем ВМТ. Это, в свою очередь, заставит поршень провернуть коленвал в обратном направлении — такое явление называют обратной вспышкой.
Октановое число является мерой процентного содержания изооктана в гептан-октановой смеси и отражает способность топлива противостоять самовоспламенению под воздействием температуры.
Топливо с более высокими октановыми числами позволяют двигателю с высокой степенью сжатия работать без склонности к самовоспламенению и детонации и, стало быть, иметь более высокую степень сжатия и более высокий КПД.
Работа дизельных двигателей обеспечивается самовоспламенением от сжатия в цилиндре чистого воздуха или бедной газовоздушной смеси, неспособной к самостоятельному горению (газодизель) и отсутствия в заряде топлива до последнего момента.
Рекомендуем: Форсирование двигателя — основы форсирования ДВС
Виды электродвигателей: классификация
Жёсткой классификации электродвигателей нет, но различать их можно по нескольким параметрам. Основные – тип питания и наличие скользящего контакта. Эти позиции можно считать ключевыми и по ним проще ориентироваться. В общем-то, видов электродвигателей не так и много – синхронные, асинхронные, постоянного тока, вентильные. Вот, пожалуй, всё. Другое дело, что в большинстве «категорий» есть достаточно вариантов, которые значительно меняют свойства и характеристики. Но с этим придётся разбираться применительно к каждой конструкции.
Электрические двигатели отличаются типом питания, устройством и назначением
Итак, рассмотрим виды электродвигателей по виду питающего напряжения. Они бывают:
- постоянного тока;
- переменного тока:
- однофазное питание;
- трехфазное питание;
- универсальные.
Пояснений требует только универсальный тип. Такой электродвигатель может работать как от постоянного, так и от переменного напряжения. По сути, один вид – универсальный коллекторный двигатель с обмотками возбуждения. К двигателям переменного тока относятся синхронные, асинхронные. На постоянном токе работают коллекторные и вентильные.
Наиболее распространённые виды электродвигателей
По способу передачи электропитания все электродвигатели можно разделить на две группы:
- с коллектором (щёточные);
- без коллектора (бесщёточные).
Бесщёточные электродвигатели требуют меньше обслуживания, работают тише, более надёжны. К ним относятся асинхронные с короткозамкнутым ротором (работают от переменного напряжения), вентильные (питаются постоянным напряжением). Остальные имеют коллектор и щётки, через которые на обмотки катушек подаётся напряжение.
Сравнение характеристик внешне коммутируемых электрических двигателей
Ниже представлены сравнительные характеристики внешне коммутируемых электродвигателей, в ракурсе применения в качестве тяговых электродвигателей в транспортных средствах.
-
Сравнение механических характеристик электродвигателей разных типов при ограниченном токе статора
-
Зависимость мощности от скорости вращения вала для двигателей разных типов при ограниченном токе статора
Параметр |
СРД-ПМ |
СДОВ |
|||
---|---|---|---|---|---|
Постоянство мощности во всем диапазоне скоростей | |||||
Момент к току статора | |||||
Эффективность (КПД) во всем рабочем диапазоне | |||||
Вес |
Примечание:
Оранжевый цвет — низкий показатель, желтый цвет — средний показатель, светло-желтый цвет — высокий показатель.
Аббревиатура:
- АДКР —
- СДПМП —
- СДПМВ —
- СРД-ПМ — синхронный реактивный двигатель с постоянными магнитами (синхронный гибридный двигатель)
- СДОВ — синхронный двигатель с обмоткой возбуждения
В соответствии с выше приведенными показателями гибридный синхронный электродвигатель, а именно синхронный реактивный электродвигатель со встроенными постоянными магнитами, является наиболее подходящим для применения в качестве тягового электродвигателя в автомобилестроении (выбор проводился для концепта автомобилей BMW i3 & BMW i8). Использование реактивного момента обеспечивает высокую мощность в верхнем диапазоне скоростей. Более того такой двигатель обеспечивает очень высокую эффективность (КПД) в широком рабочем диапазоне .
Какие бывают двигатели в автомобиле
Двигатели внутреннего сгорания имеют такие различия:
- тип используемого топлива;
- количество цилиндров;
- количество клапанов;
- расположение цилиндров.
Классификация по виду топлива включает в себя два основных варианта — бензиновые и дизельные моторы. В бензиновых двигателях топливо и воздух подаются в смешанном виде, образовывая горюю смесь, которая зажигается искрой свечи. В дизельных агрегатах топливо подается в цилиндр отдельно от воздуха, а воспламенение достигается благодаря высокой температуре при сильном сжатии в камере сгорания. Она представляет собой расстояние между ГБЦ и находящемся в верхней мертвой точке поршнем.
Степень сжатия – это соотношение объема цилиндра к объему камеры сгорания. Она определяется следующим образом: если объем цилиндра равен 500 см³, а камеры сгорания – 50 см³, то степень сжатия равняется 10:1.
Классификация по количеству цилиндров предполагает конструкцию двигателя, в которую входит от 1 до 16 цилиндров. Однако самыми распространенными считаются четырех- и шестицилиндровые варианты. Двигатели на 8 и 12 цилиндров мощнее и встречаются реже, поскольку устанавливаются на более дорогостоящие авто.
От количества цилиндров и их объема будет зависеть мощность всего двигателя. В расчете рабочий объем одного цилиндра – это объем между верхней мертвой точкой (ВМТ) и нижней мертвой точкой положения поршня.
Классификация по количеству клапанов. Стандартным считается вариант с двумя клапанами на цилиндр — впускного и выпускного. Однако увеличение их количества дает возможность повысить эффективность заполнения цилиндра и его очистку. На современных автомобилях устанавливаются двигатели преимущественно с четырьмя клапанами на цилиндр (2 впускных и 2 выпускных).
Соответственно, рядные четырехцилиндровые моторы могут иметь индекс “8 клапанные” или “16 клапанные”, а V-образные шестицилиндровые агрегаты — “24 клапанные”.
Классификация по расположению цилиндров состоит из 3-х категорий:
Рядный двигатель
- В один ряд;
- V-образно;
- Оппозитно.
Рядные моторы были выпущены первыми и до сих пор пользуются наибольшей популярностью. В зависимости от уровня балансировки автомобильные производители чаще всего устанавливают на легковые и грузовые модели рядные двигатели на 3, 4, 5 и 6 цилиндров.
Работа V-образного двигателя
Также преимущественное количество всех спортивных автомобилей оборудуется именно таким типом двигателей.
V-образные агрегаты представлены на рынке в основном в 6-ти, 8-ми и 12-ти цилиндровых вариантах с углом развала — 45, 60 и 90°. В зависимости от марки производителя, V-образные моторы имеют 2 неоспоримых преимущества:
- их ресурс более 500 тыс. км;
- они считаются одними из самых грамотно построенных и хорошо сбалансированных.
Оппозитный мотор
Оппозитные силовые установки являются видоизмененным типом стандартном двигателя. В “боксерах” (народное название оппозитного мотора) цилиндры расположены горизонтально. Сейчас подобную технологию можно встретить преимущественно на автомобилях марок Subaru и Porsche.
Благодаря горизонтальному расположению цилиндро-поршневой группы автомобиль имеет низкий центр тяжести, повышенный ресурс двигателя (до 1 миллиона км) и низкий уровень шума, вибрации во время работы.
Однако есть у оппозитников и явные минусы — это дороговизна обслуживания из-за сложности конструкции и повышенный расход масла.
Роторный двигатель
Также есть роторные двигатели, принцип работы которых идентичен, но устройство немного отличается. В их цилиндре располагается трехгранный ротор (поршень), который и сжимает топливовоздушную смесь.
Единственные 2 серьезные минуса:
- такие моторы страдают от недостаточного охлаждения;
- их приходится значительно чаще ремонтировать (ресурс не более 200 тыс. км).
Классификация двигателей внутреннего сгорания
В процессе эволюции ДВС выделились следующие, доказавшие свою эффективность, типы данных моторов:
- Поршневые двигатели внутреннего сгорания. В них рабочая камера находится внутри цилиндров, а тепловая энергия преобразуется в механическую работу посредством кривошипно-шатунного механизма, передающего энергию движения на коленчатый вал. Поршневые моторы делятся, в свою очередь, на
- карбюраторные, в которых воздушно-топливная смесь формируется в карбюраторе, впрыскивается в цилиндр и воспламеняется там искрой от свечи зажигания;
Более детально узнать о назначении, устройстве и принципе работы карбюратора, вы можете здесь: Карбюратор: устройство и принцип работы
- инжекторные, в которых смесь подаётся напрямую во впускной коллектор, через специальные форсунки, под контролем электронного блока управления, и также воспламеняется посредством свечи;
- дизельные, в которых воспламенение воздушно-топливной смеси происходит без свечи, посредством сжатия воздуха, который от давления нагревается от температуры, превышающей температуру горения, а топливо впрыскивается в цилиндры через форсунки.
- Роторно-поршневые двигатели внутреннего сгорания. В моторах данного типа тепловая энергия преобразуется в механическую работу посредством вращения рабочими газами ротора специальной формы и профиля. Ротор движется по «планетарной траектории» внутри рабочей камеры, имеющей форму «восьмёрки», и выполняет функции как поршня, так и ГРМ (газораспределительного механизма), и коленчатого вала.
- Газотурбинные двигатели внутреннего сгорания. В данных моторах преображение тепловой энергии в механическую работу осуществляется с помощью вращения ротора со специальными клиновидными лопатками, который приводит в движение вал турбины.
Наиболее надёжными, неприхотливыми, экономичными в плане расходования топлива и необходимости в регулярном техобслуживании, являются поршневые двигатели.
Технику с прочими видами ДВС можно вносить в Красную книгу. В наше время автомобили с роторно-поршневыми двигателями делает только «Mazda». Опытную серию автомашин с газотурбинным двигателем выпускал «Chrysler», но было это в 60-х годах, и более к этому вопросу никто из автопроизводителей не возвращался. В СССР газотурбинными двигателями оснащались танки «Т-80» и десантные корабли «Зубр», но в дальнейшем решено было отказаться от данного типа моторов. В связи с этим, подробно остановимся на «завоевавших мировое господство» поршневых двигателях внутреннего сгорания.
Расчет объема цилиндра двигателя советы, объяснения, формулы
Как известно, объем двигателя автомобиля представляет собой сумму объемов всех его цилиндров. Однако формула, позволяющая рассчитать объем цилиндра, публикуется в различных вариантах, что порой сбивает с толку, особенно неопытных водителей. И все же, независимо от применяемого варианта, принцип расчета во всех случаях остается одним и тем же.
Сколько тепловоздушной смеси способен пропустить за один раз цилиндр двигателя? Сразу стоит отметить, что чем больше, тем выше будет крутящий момент, а также мощность мотора. Что значит «за один раз»? Четырехтактный мотор совершает полный цикл за 2 оборота коленчатого вала, то есть происходят впуск, сжатие, рабочий ход и выпуск. Так что 2 оборота или 4 такта считаются за один раз.
Расчет объема цилиндра
Измеряется данная величина в кубических метрах или сантиметрах либо в литрах. 1000 см3 равняется 1 литру. При указании объема мотора в литрах нужно проводить округление до одной цифры после запятой.
К примеру, если объем двигателя составляет 1486 см3, то при переводе в литры его нужно обозначать как 1,5 литра; если объем равен 2526 см3, то его следует записать как 2,5 литра.
Литраж цилиндров силовых агрегатов автомобилей отличается.
Понятие рабочего объема цилиндра
Рабочий объем цилиндра представляет собой объем между крайними позициями движения поршня.
Он наполняется горючей тепловоздушной смесью во время ее впускания при движении поршня из верхней крайней позиции в нижнюю.
Подходя к верхней мертвой позиции, поршень оставляет свободный объем – камеру сгорания, или сжатия. Чтобы рассчитать объем цилиндра полностью, нужно суммировать объем камер и рабочий объем.
Уровень сжатия – это величина, которая определяется как частное полного деления в одном цилиндре и объема камеры сгорания. Этот параметр определяет степень сжатия горючей смеси в цилиндре. От нее зависит мощность двигателя, ведь чем выше уровень сжатия, тем сильнее сгорающая смесь давит на поршень.
Повышение уровня сжатия – дело выгодное, поскольку в этом случае порция топлива может сделать больше полезной работы. Однако если уровень сжатия увеличить чрезмерно, рабочая смесь может самовоспламеняться или сгорать слишком быстро, а топливо детонирует. В результате быстрого сгорания рабочей смеси силовой агрегат работает неустойчиво.
На увеличение мощности мотора влияет увеличение количества оборотов коленчатого вала за одну минуту. Но и здесь есть свои препятствия. Это нехватка времени для попадания горючей смеси внутрь цилиндра, сложность удаления отработанных газов, а также чрезмерное ускорение работы частей и механизмов, ведущее к их быстрому износу.
Для преодоления этих препятствий конструкторы увеличивают количество оборотов коленчатого вала. Для многоцилиндровых силовых агрегатов производят расчет объема цилиндра, после чего эти объемы суммируют, получая литраж мотора. Повышение мощности двигателя является следствием увеличения его литража. А параметр этот определяется классом транспортного средства.
Непостоянный рабочий объем
Обеспечение непостоянного рабочего объема цилиндра является насущной задачей. Для достижения такого эффекта применяется технология автоматической остановки части цилиндров при неполной нагрузке двигателя. Такая система уже используется в некоторых моделях пикапов и внедорожников, экономия топлива при этом составляет в среднем около 20%.
Есть и специальные двигатели, в которых применяется механическая трансформация рабочего хода поршня. Однако они пока еще находятся на стадии разработки. Стоит отметить, что двигатели внутреннего сгорания с непостоянным рабочим объемом цилиндров используются в качестве лабораторного оборудования, позволяя устанавливать «моторным способом» октановое число бензина.
Онлайн-калкулятор
Рассчитать объем цилиндра можно через:
- радиус основания и высоту, при этом высота равняется ходу поршня;
- площадь основания и высоту.
Но есть и более сложные калькуляторы, обладающие расширенным набором функций. Они позволяют рассчитывать не только объем мотора, но и степень сжатия. Для вычислений необходимы значения следующих параметров:
- длину шатуна;
- ход поршня;
- недоход поршня;
- диаметр цилиндра;
- объем поршневой камеры;
- толщину и диаметр прокладки;
- объем камеры в ГБЦ;
- количество цилиндров.
Перед тем, как посчитать объем цилиндра или всего двигателя либо вычислить уровень сжатия, следует уточнить и записать все вышеперечисленные параметры. У новичков с этим могут возникнуть сложности, поэтому придется проявить настойчивость.
Принцип работы
Машина с ДВС (двигателем) должна ездить, а для этого ей необходимо совершить механическое усилие. Именно его и производит двигатель, который передает вращательную силу на колеса автомобиля. Те вращаются, и транспортное средство начинает движение. Это очень примитивное объяснение, которое позволит лишь отдаленно понять, что это такое – ДВС в машине. Главная цель двигателя – преобразование бензина (или дизельного топлива) в механическое движение. Сегодня самый простой способ заставить автомобиль двигаться – это сжечь топливо внутри мотора. Именно поэтому двигатель внутреннего сгорания получил соответствующее название. Все они работают по одинаковому общему принципу, хотя есть некоторые разновидности: дизельные, с карбюраторными или инжекторными системами питания и так далее.
Итак, принцип мы поняли: топливо сгорает, высвобождает при этом большие объемы энергии, которые толкают механизмы в двигателе, что приводит к вращению коленчатого вала. Усилия затем передаются на колеса, и машина начинает движение.
Принцип работы четырехтактного двигателя
Такты четырехтактного двигателя
Четырехтактные двигатели используются во всех автомобилях, крупной технике, авиации
Это так называемый классический вид ДВС, которому конструкторы уделяют всё свое внимание. Условно работу каждого цилиндра в ЦПГ можно разделить на 4 этапа (такта). Это впуск, сжатие, сгорание, выпуск
На видео, ниже, наглядно показано работу 4-тактного двигателя в 3Д анимации
Это впуск, сжатие, сгорание, выпуск. На видео, ниже, наглядно показано работу 4-тактного двигателя в 3Д анимации.
- На такте впуска поршень в цилиндре движется вниз, от клапанов к нижней мертвой точке (НМТ). Когда он начинает опускаться, открывается впускной клапан и в цилиндр поступает топливно-воздушная смесь (или только воздух, если двигатель с непосредственным впрыском). При движении поршень сам «накачивает» нужный объем воздуха в камеру сгорания, если двигатель атмосферный, или воздух поступает под напором, если установлен турбонаддув.
- Дойдя до нижней мертвой точки поршень начинает подниматься. При этом впускной клапан закрывается, и при движении поршень сжимает воздух с распыленным в нём топливом до критического давления.
- Как только поршень условно доходит до верхней мертвой точки и компрессия становится максимальной, срабатывает свеча зажигания и топливо вспыхивает (дизтопливо зажигается при сжатии само, без искры). Микровзрыв от вспышки толкает поршень снова вниз, к НМТ.
- И на четвертом такте открывается выпускной клапан. Поршень снова движется вверх, выдавливая из камеры сгорания выхлопные газы в выпускной коллектор.
Работа четырехтактного двигателя
По сути, полезной работы в двигателе только один такт из четырех, когда при сгорании топлива создается избыточное давление, толкающее поршень. Остальные три такта нужны как вспомогательные, которые не дают импульса к движению, но на них расходуется энергия.
При таких условиях двигатель мог бы остановиться, когда кривошипно-шатунный механизм (КШМ) приходит к энергетическому равновесию. Но чтобы этого не произошло, используется большой маховик, соединенный с системой сцепления, и противовесы на коленвале, уравновешивающие нагрузки от работы поршней.
Принцип работы двухтактного двигателя
Такты двухтактного двигателя
Двухтактные двигатели используются не слишком широко. В основном это моторы скутеров и мопедов, легких моторных лодок, газонокосилок. Весь рабочий процесс такого двигателя можно разделить на два основных этапа:
- В начале движения поршня снизу вверх (от нижней мертвой точки к верхней) в камеру сгорания поступает топливно-воздушная смесь. Поднимаясь, поршень сжимает ее до критической компрессии, и когда он находится в верхней мертвой точке, происходит поджиг.
- Сгорая, топливо толкает поршень вниз, при этом одновременно открывается доступ к выпускному коллектору и продукты сгорания выходят из цилиндра. Как только поршень достигает нижней мертвой точки (НМТ), повторяется первый такт – впуск и сжатие одновременно.
Работа двухтактного двигателя
Казалось бы, двухтактный двигатель должен быть вдвое эффективней четырехтактного, ведь здесь на полезное действие приходится половина работы. Но в реальности мощность двухтактного двигателя намного ниже, чем хотелось бы, и причина этого кроется в несовершенном механизме газораспределения.
При сгорании топлива часть энергии уходит в выпускной коллектор, не выполняя никакой работы кроме нагрева. В итоге, двухтактные двигатели применяются только в маломощном транспорте и требуют особых моторных масел.
Дизельные двигатели
Дизельный мотор — это вид двигателя, который расходует как горючее дизельное топливо. Основные системы и элементы движка идентичны бензиновому брату, различие состоит в системе впрыска и воспламенении смеси. В дизельном моторе отсутствуют свечи зажигания, поскольку воспламенение смеси от искры не нужно.
На моторах такого типа устанавливаются свечи накала, которые разогревают воздух в камере сгорания, который превышает температуру воспламенения. После этого через форсунки подаётся распылённое топливо, которое сгорает, чем создаёт достаточное давление для привода в движения поршня, который раскручивает коленчатый вал.
Дизель с турбонаддувом
Одним из подвидов дизельного ДВС считается турбодизель. На этом моторе установлена турбина, которая имеет вид улитки. При помощи турбины в мотор подаётся больше количество сжатого воздуха, который даёт больше детонационный эффект, за счёт чего движок можно быстрее разогнать.
Виды двигателей
Первый полноценный прототип двигателя внутреннего сгорания был сконструирован в далёком 1806 году, который принадлежал братьям Ньепсье
После этого важного исторического факта было недолгое затишье
Но, в конце 19 века три легендарным немца положили старт автомобилестроению — Николас Отто, Готлиб Даймлер и Вильгельм Майбах. После этого двигатели внутреннего сгорания получили много модификаций и вариантов, которые используются по сегодняшний день.
Рассмотрим, какие существуют виды автомобильных ДВС, а также укажем типы двигателей:
- Паровая машина
- Бензиновый двигатель
- Карбюраторная система впрыска
- Инжектор
- Дизельные двигатели
- Газовый двигатель
- Электрические моторы
- Роторно-поршневые ДВС
Алюминиевый кузов
Современные конструкторы постоянно ищут способы снижения массы без потери жесткости и прочности. Одним из перспективных материалов является алюминий. Масса алюминиевых деталей в 2005 году в европейских автомобилях составила 130 кг.
Сейчас активно применяется материал пеноалюминий. Это очень легкий и одновременно жесткий материал, который хорошо поглощает удар при столкновении. Пенистая структура обеспечивает высокую термостойкость и шумоизоляцию. Минусом данного материала является его высокая стоимость, примерно на 20% дороже традиционных аналогов. Широко применяют алюминиевые сплавы концерны «Ауди» и «Мерседес». Например, за счет таких сплавов удалось значительно снизить массу кузова Ауди А8. Она составляет всего 810 кг.
Алюминиевый кузов Audi A8
Кроме алюминия рассматриваются пластиковые материалы. Например, инновационный сплав «Fibropur», который по жесткости практически не уступает стальным листам.
Кузов является одним из важнейших конструктивных компонентов любого автомобиля. От него во многом зависит масса, управляемость и безопасность транспортного средства. Качество и толщина материалов сказывается на долговечности и устойчивости к коррозии. Современные автопроизводители все чаще применяют углепластик или алюминий, чтобы снизить массу конструкции. Главное, чтобы кузов смог обеспечить максимально возможную безопасность для пассажиров и водителя в случае столкновения.
Дополнительные компоненты двигателя
Помимо основных деталей, которые обязательно присутствуют в конструкции двигателя, есть еще дополнительные детали и узлы, которые улучшают характеристики и работу ДВС.
Принцип работы турбины
Турбина — это устройство, которое создает дополнительного нагнетание топлива. Двигатель с турбиной имеет большую производительность.
Идея создания турбины появилась при обнаружении такого факта, что при движении поршня вверх, солярка не успевает полностью сгорать.
С помощью турбины, сгорание топлива в цилиндрах происходит до конца, за счет чего уменьшается расход топлива и увеличивается мощность ДВС.
Турбонаддув, он же турбонагнетатель состоит из:
- подшипники — служит опорой дает возможность вращаться валу;
- кожух на турбине;
- кожух на компрессоре;
- стальная сетка.
Цикл работы турбонаддува:
- Компрессор создает вакуум и всасывается воздух внутрь системы.
- Ротор турбины передает вращение ротору.
- Интеркулер охлаждает воздух.
- Через впускной коллектор осуществляется подача воздуха, предварительно воздух проходит степени очистки (воздушные фильтры). После поступления воздуха, впускной клапан закрывается.
- Отработанные газы движутся через турбину ДВС и создают давление на ротор.
- В этот момент скорость вращения турбины вала турбины очень высока, достигает 1500 оборотов в секунду. От этого начинает вращаться ротор компрессора.
Цикл далее повторяется.
Интеркулер и форсунка
При сжатии плотность воздуха и температура увеличиваются. Это негативно сказывается на межремонтном периоде деталей двигателя. В связи с чем была разработано устройство, которое охлаждает горячий воздушный поток.
В зависимости от модификации дизельных двигателей, в цилиндре топливо может распыляться одной или двумя форсунками.
Классификация двигателей автомобилей
Двигатель – энергетическая машина, преобразующая какую-либо энергию в механическую работу. Основным типом энергетической установки на транспорте является тепловой двигатель – сложная техническая система, преобразующая теплоту в механическую работу.
На отечественных автомобилях установлены поршневые двигатели внутреннего сгорания. Эти двигатели классифицируют по следующим основным признакам:
1. По способу воспламенения горючей смеси: двигатели с воспламенением от сжатия (дизели) и двигатели с искровым (принудительным) зажиганием (бензиновые и газовые).
2. По способу смесеобразования: двигатели с внешним смесеобразованием (бензиновые и газовые) и с внутренним смесеобразованием (дизели).
3. По виду регулирования мощности: двигатели с количественным и двигатели с качественным регулированием мощности. При количественном регулировании мощность изменяется дроссельной заслонкой за счет количества топливовоздушной смеси, поступающей в цилиндр, а при качественном – варьированием количества впрыскиваемого топлива при неизменном количестве воздуха (варьированием состава смеси).
4. По способу осуществления рабочего процесса: четырехтактные и двухтактные двигатели.
5. По виду применяемого топлива: двигатели жидкого топлива, работающие на бензине и дизельном топливе, и двигатели газообразного топлива, работающие на сжатом или сжиженном газе.
6. По числу цилиндров: двигатели одноцилиндровые и многоцилиндровые (двух-, четырех-, шестицилиндровые и т.д.).
7. По расположению цилиндров: однорядные, или линейные, двигатели (цилиндры расположены в один ряд) и двухрядные, или так называемые V-образные (два ряда цилиндров расположены под углом друг к другу).
Двигателям с искровым зажиганием свойственно количественное регулирование мощности и внешнее смесеобразование. В них возможно использование бензина и газа. Бензиновые двигатели разделяют на две модификации – двигатели с впрыскиванием топлива через форсунку во впускную систему (обычно на впускной клапан или в цилиндр) и карбюраторные (топливовоздушная смесь, поступающая в цилиндры, подготавливается карбюратором).
Карбюраторные двигатели в настоящее время активно вытесняются двигателями с впрыскиванием топлива. Подача топлива в этих двигателях осуществляется по сигналу блока управления, сформированному по информации комплекса датчиков (расход воздуха, частота вращения коленчатого вала, положение дроссельной заслонки и т.д.).
Двигателям с воспламенением от сжатия (дизелям) свойственно регулирование мощности посредством изменения состава смеси и внутреннее смесеобразование.
Четырехтактный ДВС
1 цикл — это 4 такта
В первом такте выполняется впуск смеси. Топливо смешивается с воздухом. Поршень двигается к наивысшей точке. В камере сгорания создаётся область низкого давления — разрежение. Впускной клапан открывает отверстие в камере для подачи смеси. Коленвал начинает первый оборот.
Во втором такте смесь сжимается. Впускной клапан закрывается. Поршень, достигнув наивысшей точки, сжимает обогащённую топливную смесь. Коленвал завершает первый оборот.
Рабочий ход выполняется в третьем такте. Обогащённая смесь поджигается. В бензиновых двигателях поджигание производится электрической дугой от свечи. В дизельных — топливо воспламеняется самостоятельно в процессе сжатия. Облако расширяющихся газов заставляет поршень двигаться вниз. Начало второго оборота коленвала.
В четвёртом такте происходит выпуск. Открывается выпускной клапан. Газы выводятся в коллектор, а затем выбрасываются наружу. Поршень начинает двигаться вверх. Вал завершает второй оборот.
Таким образом, за 1 рабочий цикл этот двигатель совершает 4 такта, во время которых вал проворачивается дважды.
Видео: Принцип работы четырёхтактного двигателя
Преимущества и недостатки
Преимущества двигателей внутреннего сгорания в таких качествах:
- удобстве использования – излишняя конструктивная сложность не препятствует работе в пределах нормативного срока; сеть заправочных станций обеспечивает повсеместную эксплуатацию машин с такими силовыми установками; при выходе из строя возможна замена отдельных элементов, с продлением ресурса силовой установки;
- простоте обслуживания – достаточно залить бак горючим, и мотор готов к работе; это намного проще, чем заряжать электродвигатель;
- длительном сроке службы – если владелец выполняет технические условия изготовителя, двигатель проработает не один десяток лет, при проведении периодического обслуживания и должного ухода;
- эстетических соображениях – звук работающего мотора вдохновляет и вызывает позитивное настроение.
Но не следует забывать о недостатках:
- загрязнении окружающей среды – выхлопы представляют серьезную опасность для экологии, а повсеместное использование ДВС усложняет ситуацию;
- низкой эффективности – КПД большинства моторов не превышает 30 процентов, что намного уступает электродвигателям; наибольший КПД, достигнутый разработчиками Toyota, достигает 38 процентов, что также не впечатляет;
- излишней сложности конструктивного устройства – с повышением требований к моторам, конструкция все более усложняется, что не идет на пользу долговечности и техническому обслуживанию, с необходимостью привлечения специализированного сервиса, использования смазочных материалов по высокой цене и пр.
Несмотря на перечисленные недостатки, достойной альтернативы двигателям внутреннего сгорания нет. Эти моторы остаются самыми распространенными, и будущее современной техники пока непредставимо без применения этих силовых установок.