Что такое система возбуждения в генераторе переменного тока?

Скрининг на предмет обрыва обмотки

Обмотка обрывается достаточно часто, это наиболее распространенная проблема электродвигателей, которые работают неправильно. Оборваться обмотка может и в статоре и в роторе.

Если обрыв в обмотке со схемой «звезды», то в месте обрыва тока не будет, а в остальных фазах его значение будет завышено. В «треугольнике» наоборот: в остальных проводниках ток будет меньше нормального значения, а в месте обрыва – завышен.

Схемы подключения

Об обрыве в роторе сигнализируют колебания тока, частота которых равна частоте колебания напряжения. При этом можно чувствовать вибрацию и слышать гудение.

Для подтверждения возможной поломки нужно прозвонить двигатель.

Если электромотор рассчитан на бытовое напряжение в 220В, нужно прозвонить пусковую и рабочую обмотку. Во время измерения сопротивление пусковой обмотки, значение должно быть в 1,5 раза больше чем рабочей.

Если электродвигатель рассчитан на подключение к сети с напряжением 380В, а обмотки в нем подключены по схемам «звезда» или «треугольник», то каждая обмотка проверяется отдельно. Сопротивление всех обмоток возбуждения в одном двигателе постоянного тока должно быть одинаковым. При наличии обрыва сопротивление стремится к бесконечности.

В мультиметре также есть возможность «прозвонки». Таким способ можно легко обнаружить обрыв в цепи. Звуковой сигнал и световой индикатор не дадут вам его пропустить.

Что происходит в обмотке статора

Каждая фаза сети питания подключается к соответствующей катушке статора, поэтому возникающее вокруг них магнитное поле будет смещено на 120˚. Источник питания имеет переменное напряжение, следовательно, вокруг катушек статора, которыми располагает асинхронный двигатель, будет возникать переменное магнитное поле. Схема асинхронного двигателя собирается так, чтобы магнитное поле, возникающее вокруг катушек статора, постепенно изменялось и последовательно переходило от одной обмотки к другой. Таким образом создаётся эффект вращающегося магнитного поля. Можно вычислить его частоту вращения. Измеряться она будет в оборотах за минуту. Определяется по формуле: n=60f/p, где f — это частота переменного тока в подключенной сети (Гц), p — соответствует числу пар полюсов, смонтированных на статоре.

Неисправность №5

При включении зажигания и при работе двигателя не загорается контрольная лампа сигнализирующая о разряде аккумуляторной батареи, остальные лампы в комбинации приборов работают:

  • Перегорание контрольной лампы/плохой контакт – перегоревшую лампочку заменить/контакты в посадочном месте зачистить и прижать;
  • Обрыв электрической цепи «вывод генератора «D» на щиток приборов» — проверка на целостность провода коричневого цвета с полосой белого идущего от вывода «D» на щиток приборов;
  • Окисление контактных колец, а так же подвисание и износ щеток – щеткодержатель в сборе со щетками следует заменить, контактные кольца протереть чистой тряпочкой смоченной обезжиривателем;
  • Обрыв цепи «вывод «DF – масса» (повреждение регулятора напряжения) – замена регулятора;
  • Обрыв провода щеткодержателя от вывода «D+» — восстановить контакт;
  • Замкнулись «положительные диоды (вентиля) – замена блока выпрямителей;
  • Отпаялись вывода идущие от контактных колец на обмотку возбуждения ротора – припаять вывода на место/заменить ротор/ заменить генератор.

На этом перечисление основных неисправностей генератора ваз 2110 заканчивается, надеюсь что данная инструкция выручит вас в нужную минуту.Как говорится — ни гвоздя, ни жезла)))

Генератор постоянного тока с независимым возбуждением

В случае, если обмотка или, как еще говорят, цепь возбуждения машины запитана от электросети, от аккумулятора или стороннего генератора, то она будет принадлежать к классу машин с возбуждением независимого типа.

На рисунке показано присоединение машины с независимым возбуждением.

В устройстве генератора, в схеме, в обязательном порядке присутствует, регулирующий Iвозб – реостат и нагрузочное сопротивление (R). К главным параметрам, по которым можно судить о качествах машины, относятся несколько видов характеристик, это: внешняя, регулировочная и параметр характеризующий работу генератора во время холостого хода.

Характеристика х. х. выражена через влияние Iвозб. на ЭДС электрической машины, количество оборотов остается неизменным. Она показывает величину напряжения на клеммах, U должно быть равным величине ЭДС якоря при отключенной цепи и свидетельствует о магнитной насыщенности, явлении гистерезиса на элементах устройства.

Внешняя характеристика определяется зависимостью величины U, замеренного на контактах МПТ от Iнагр, в то время как скорость и Rцепи возбужд., останутся неизменными.

Демонстрация регулировочной характеристикой в результате изменения Iвозб, показывает влияние на него Iраб.

Характеристика нагрузки демонстрирует влияние на U замеренного  на клеммах машины Iвозб, она идентична с  характеристикой х. х. С ее помощью определяется воздействие на магнитное поле якорного тока.

Характеристика генератора от Iк.з прослеживается по замкнутой цепи по данным амперметра, подключенного к якорной цепи, подвержена влиянию Iк.з. и тока находящегося в шунтовой обмотке.

Для оборудования такого типа представляет опасность возникновение короткого замыкания якорной обмотки, вследствие того, что Iк.з. намного больше значения Iном.

Использование генераторного оборудования независимого возбуждения желательно применять в случаях с важностью регулирования величины напряжения в самых широких границах, например, для питания электролитических ванн

Ротор

Ротор асинхронного электродвигателя бывает двух видов: короткозамкнутым и фазным. Чаще всего встречаются машины с короткозамкнутым ротором. Их преимущество в простоте конструкция и несложной технологии изготовления

Что еще важно, в таких моторах отсутствует контакт с динамической конструкцией. Это повышает долговечность, делает обслуживание более редким и простым

Асинхронный двигатель может быть с короткозамкнутым и фазным

Асинхронные электромоторы с фазным ротором имеют более сложную конструкцию. Но они позволяют плавно регулировать скорость без дополнительных устройств, со старта имеют высокий крутящий момент. Так что приходится выбирать: более простая конструкция или возможность регулировки скорости вращения.

Устройство короткозамкнутого ротора

Ротор состоит из вала и цилиндрической конструкции из короткозамкнутых стержней. Внешне эта конструкция очень напоминает беличье колесо, поэтому так часто называют короткозамкнутую обмотку ротора.

Устройство короткозамкнутого ротора

Изначально и стержни, и замыкающие кольца изготавливались из меди. Роторы современных асинхронных двигателей мощностью до 100 кВт делают из алюминиевых стержней, с алюминиевыми же замыкающими дисками. Расстояние между стержнями заливается снова-таки алюминиевым сплавом. Получается короткозамкнутый ротор, но уже со сплошным покрытием.

Так как при работе выделяется значительное количество тепла, для охлаждения перемычки «беличьего колеса» делают с дополнительными вентиляционными лопатками. Так во время работы происходит самоохлаждение. Оно работает тем эффективнее, чем выше скорость вращения.

Как устроен асинхронный двигатель: устройство и компоновка деталей

Ротор устанавливается в статор, концы вала фиксируются при помощи крышек с вмонтированными подшипниками. Это двигатель без щеток (безщеточный). Никаких дополнительных контактов и электрических соединений. Подвижная часть мотора начинает вращаться при наличии магнитного поля на статоре. Оно возникает после подачи питания. Это поле вращается, заставляя вращаться и предметы, которые находятся в его поле. Простая и надёжная конструкция, которая обусловила популярность электрических двигателей этого типа.

Как сделан фазный ротор

Устройство фазного ротора мало чем отличается от обмотки статора. Те же наборные кольца с пазами под укладку медных катушек. Количество обмоток ротора три, соединены они обычно «звездой».

Так выглядит фазный ротор асинхронного двигателя

Концы роторных обмоток крепят к контактным кольцам из меди. Эти кольца жёстко закреплены на валу. Кроме того, они обязательно изолированы между собой, не имеют электрического контакта со стальным валом (крепятся к стержню через диэлектрические прокладки). Так как наличие колец отличительная черта этого типа движков, иногда их называют кольцевыми.

Построение двигателя и область его применения

Схема электродвигателя рассматриваемого типа изображена ниже.

Из нее следует:

  • общий ток, потребляемый эл мотором от источника, составляет I = I Я + I В, где I Я, I В – токи через якорь, обмотку возбуждения, соответственно;
  • одновременно I В не зависит от I Я, то есть не зависит от нагрузки.

Принцип действия электромотора определяет его тяговые свойства. Устройство применяется тогда, когда пуск не требует обеспечения высокого момента, то есть когда режимы эксплуатации приводных механизмов не предполагают создание больших стартовых нагрузок. Это типично для станков и вентиляторов.

Для практики ценны такие полезные тяговые параметры подобных эл механизмов как

  • устойчивость работы при колебаниях нагрузки;
  • высокая экономичность из-за того, что I Я не протекает через ОВ.

Пуск при недостаточном моменте обеспечивается переходом на схему смешанного типа.

Проверка регулятора напряжения

  1. Для того, чтобы проверить регулятор напряжения потребуется вольтметр со шкалой от 0 до 15 В. До начала проверки следует прогреть двигатель минут 15 на средних оборотах с включенными фарами.
  2. Произведите замер напряжения между выводами «массы» генератора и «30» («В+»). На вольтметре должно показываться нормальное для конкретного автомобиля напряжение. К примеру, для ВАЗ 2108 оно будет соответствовать — 13,5–14,6 В. Если напряжение будет ниже или выше — вероятнее всего регулятор требует замены.
  3. Кроме того, можно проверить регулируемое напряжение, для этого подключите вольтметр к клеммам АКБ. Следует отметить, что результат такого измерения будет неточным, если вы уверенны, что проводка 100% исправна. Мотор при этом должен работать на средних оборотах близких с включенными фарами и прочими потребителями электроэнергии. Размер напряжения должен совпадать с определенной величиной для конкретной модели авто.

Комплект поставки:

В комплект системы возбуждения входит:

  • Шкаф системы возбуждения;
  • Защитное сопротивление (внутри шкафа системы возбуждения);
  • Преобразовательный трансформатор;
  • Комплект технической документации на русском языке: паспорт, техническое описание и инструкция по эксплуатации, комплект схем и чертежей, описание сервисного программного обеспечения (на электронном носителе);
  • Электронный носитель с документацией и сервисным ПО;
  • Комплект ЗИП (состав согласно техническим требованиям Заказчика).

*По требованию Заказчика комплект поставки может быть изменен. Точный комплект поставки указывается в паспорте на изделие.

Как происходит возбуждение в гене

Электроэнергия или электрическая сила в генераторе возникает тогда, когда сквозь магнитный поток внутри перемещается проводник. Ток возникает также и в том случае, когда перемещается магнит, а проводник остается неподвижным.

Без теоретических объяснений и выводов, можно представить себе возбуждение гена так:

  • На обмотку гена подается электричество с АКБ. Электрический ток первыми принимают щетки и медные кольца.
  • Реле отсечки – специальная штука, которая не дает аккумулятору разрядиться при остановке генератора. Когда водитель включает зажигание, то напряжение поступает на реле отсечки, оно притягивает внутренние элементы генератора, тем самым, замыкаются контакты. Получается, что реле в этом случае – эффективный переходник, соединяющий обмотку гена с аккумулятором.
  • На приборной панели в салоне автомобиля предусмотрена лампочка. Она дает понять водителю, когда начинается зарядка геном АКБ. Когда включается зажигание, она горит до тех пор, пока напряжение идет с аккумулятора и гаснет, когда процесс энергополучения идет обратно.

Система тиристорного самовозбуждения резервная (СТСР)

В схемах рис.5.1, 5.2, 5.3 благодаря наличию контактных колец на роторе можно использовать систему резервного возбуждения. В прежних системах использовался двухмашинный агрегат из асинхронного двигателя, соединенного с генератором постоянного тока. Асинхронный двигатель получал питание от шин собственных нужд и был общим для нескольких генераторов.

Назначение этих систем – питание обмотки ротора синхронной машины в случаях, когда основная система вследствие неисправности или технического обслуживания выведена из работы. На электростанциях устанавливают одну резервную систему на группу генераторов. На многих станциях продолжают использовать двухмашинные агрегаты, питаемые от шин собственных нужд. Более совершенной является статическая система СТСР, представляющая собой мощный регулируемый источник постоянного тока. Система оснащена всеми необходимыми средствами защиты, управления и коммутации.

Схемы генераторов с дополнительными диодами

Можно сделать схему возбуждения генератора более короткой и надежной. Ток возбуждения  проходит только внутри генератора и не проходит во внешнюю цепь через замок зажигания. Для этого ток возбуждения берется  с обмоток генератора, выпрямляется отдельным маленьким выпрямителем и отправляется сразу в обмотку возбуждения.

Схема с дополнительными диодами позволяет защитить аккумулятор от случайного разряда через обмотку возбуждения. В такой схеме обмотка возбуждение, на прямую, не подсоединена  к выходу генератора и аккумулятора. Ток возбуждения протекает не от выхода диодного моста, соединенного с аккумулятором, а  прямо от своих обмоток  в обмотку возбуждения, через дополнительный выпрямитель.

Для первоначального возбуждения приходится использовать аккумулятор. Ток первоначального возбуждения, при включении замка зажигания, проходит в обмотку возбуждения через лампочку. Лампочка имеет большое сопротивление, поэтому ток в цепи возбуждения протекает маленький (лампочка светится), такого тока вполне достаточно для подмагничивания ротора. Как только ротор подмагнитился, генератор начинает вырабатывать напряжение и появляется ток в обмотках, этот ток идет через дополнительные диоды в обмотку возбуждения и намагничивание ротора возрастает, так генератор, практически сразу, возбуждается, получив первоначальный толчок маленьким током через лампочку. Дальше генератор работает уже самостоятельно, потребляя необходимый ток возбуждения через дополнительные диоды.  

Цепь внешнего возбуждения остается подключенной, она используется снова при следующем запуске двигателя. Лампочка, фактически, разделяет цепь первоначального возбуждения генератора и цепь рабочего возбуждения. Ток обмотки  возбуждения может достигать 5-и Ампер, но чтобы обмотка возбуждения не могла  потреблять такой ток от аккумулятора,  в цепи первоначального возбуждения и стоит лампочка ограничивающая этот ток. На первый взгляд проблема остается – если ротор генератора не крутится, а зажигание включено, то аккумулятор разряжается, но разражается очень маленьким током через лампочку (лампочка горит)

Ток лампочки может гореть несколько дней и это не приведет к полному разряду нормального аккумулятора. Очень важное преимущество такой схемы состоит в том, лампочка  не только ограничивает ток разрядки аккумулятора через обмотку возбуждения, но то, что она становится очень полезным индикатором состояния системы генератор – аккумулятор и позволят контролировать процесс зарядки аккумулятора и исправность – неисправность генератора

 Схема генератора с дополнительными диодами и регулятором напряжения  типа L (D+)

Особенности ремонта асинхронной машины

Проблемы с двигателем любого типа могут иметь механический или электрический характер. В первом случае свидетельствовать о неисправности может сильная вибрация и характерный шум, как правило, это говорит о проблемах с подшипником (обычно в торцевой крышке). Если вовремя не устранить неисправность, вал может заклинить, что неминуемо приведет к выходу из строя обмоток статора. При этом тепловая защита автоматического выключателя может не успеть сработать.


«Сгоревшие» провода обмотки статора

Исходя из практики, в 90% выход из строя асинхронных машин возникают проблемы с обмоткой статора (обрыв, межвитковое замыкание, КЗ на корпус). При этом короткозамкнутый якорь, как правило, остается в рабочем состоянии. Поэтому даже при механическом характере повреждений необходимо произвести проверку электрической части.

Ремкомплекты генератора

Чтобы устранить указанные неисправности генератора, понадобится провести ремонт. Начиная поиск ремкомплекта генератора в интернете, стоит приготовиться к разочарованию — предлагаемые комплекты, как правило, содержат шайбы, болты и гайки. А вернуть генератору работоспособность порой можно только заменой — щеток, диодного моста, регулятора… Поэтому храбрец, решившийся на ремонт, составляет индивидуальный ремкомплект из тех деталей, которые подходят к его генератору. Выглядит это примерно так, как показывают таблице ниже, на примере пары генераторов для ВАЗ 2110 и Форд Фокус 2.

Генератор КЗАТЭ 9402.3701-03
Деталь Каталожный номер Цена (руб.)
Щетки 1127014022 105
Регулятор напряжения 844.3702 580
Диодный мост БВО4-105-01 500
Подшипники 6303 и 6203 345
Генератор Bosch 0 986 041 850
Деталь Каталожный номер Цена (руб.)
Щетки 140371 30
Щеткодержатель 235607 245
Регулятор напряжения IN6601 1020
Диодный мост INR431 1400
Подшипники 140084 и 140093 140/200 рублей

Однофазный асинхронный двигатель

Выше рассматривался трехфазный асинхронный двигатель, в однофазном асинхронном двигателе их две. Одна рабочая, вторая вспомогательная. Вспомогательная нужна для того, чтобы придать первоначальное вращение ротору. Потому может называться ещё пусковой или стартовой.

Однофазный асинхронный двигатель имеет две обмотки: рабочую и вспомогательную (стартовую или пусковую)

Когда в статоре включена одна обмотка, она создаёт два равных магнитных поля, вращающихся в разные стороны. Если ввести в это поле ротор, который уже имеет какое-то начальное вращение, магнитное поле будет поддерживать это вращение. Но как запустить ротор на старте? Как придать ему вращение, ведь от одной обмотки возникают два равноценных магнитных поля, направленные в разные стороны. Так что с их помощью заставить вращаться ротор невозможно. В простейшем варианте вращение задаётся вручную — механически. Затем вращение подхватывает поле.

Чтобы автоматизировать запуск однофазного асинхронного двигателя и сделана вспомогательная обмотка. Она сконструирована так, что подавляет одну из составляющих магнитного поля основной обмотки и усиливает вторую. Соответственно, одна из составляющих перевешивает, задавая вращение ротора. Затем стартовая обмотка отключается, вращение поддерживает основная.

Источник

7.4. ЭДС И ЭЛЕКТРОМАГНИТНЫЙ МОМЕНТ ГЕНЕРАТОРА ПОСТОЯННОГО ТОКА

Как уже отмечалось, ЭДС, наведенная в обмотке вращающегося якоря генератора,
пропорциональна магнитному потоку полюсов и частоте его вращения:

Магнитный поток в генераторе, как известно, создается током возбуждения
Iв.
Если вращать якорь c постоянной частотой n и непрерывно измерять выходную
ЭДС Е, то можно построить график Е = f (Iв) (рис. 7.4.1).


Эта зависимость называется характеристикой холостого хода. Она
строится для режима, когда генератор не имеет внешней нагрузки, т.е.
работает вхолостую.
Если подключить к генератору нагрузку, то напряжение на его зажимах
будет меньше E на величину падения напряжения в цепи якоря:

Здесь: U — напряжение на зажимах;
Е — ЭДС в режиме х.х.;
IЯ — ток якоря;
RЯ — сопротивление в цепи якоря.
Падение напряжения в цепи якоря обычно не превышает 2-8 % ЭДС генератора.
Уменьшение напряжения на выходе генератора связано с размагничиванием
машины магнитным полем якоря, а также падением напряжения в его обмотках.
В каждой машине постоянного тока имеет место взаимодействие между током
якоря IЯ и магнитным потоком Ф. В результате на каждый проводник обмотки
якоря действует электромагнитная сила:

где В — магнитная индукция,
IЯ — ток в обмотке якоря,
L — длина якоря.
Направление действия этой силы определяется правилом левой руки.
Подставим сюда среднее значение магнитной индукции ВСР и величину тока
в каждом проводнике обмотки якоря I = IЯ / 2 а.
Получим

Электромагнитный момент, действующий на якорь машины, при числе проводников
обмотки N:

где — величина,
постоянная для данной машины;
d — диаметр якоря;
р — число пар полюсов;
N — число проводников обмотки якоря;
а — число пар параллельных ветвей.
При работе машины в режиме генератора электромагнитный момент действует
против вращения якоря, т.е. является тормозным.
Для привода генератора требуется электродвигатель мощность, которого
должна покрыть все потери в генераторе:

где Р — полезная электрическая мощность генератора;DРЯ — потери в обмотке якоря;DРВ — потери в обмотке возбуждения; DРМ — потери на намагничивание машины;DРМЕХ — механические потери, связанные с трением вращающихся частей.

Коэффициент полезного действия генератора определяется отношением:

У современных генераторов постоянного тока коэффициент полезного действия
составляет 90-92 %.

Системы самовозбуждения

Системы самовозбуждения менее надежны, чем системы независимого возбуждения, поскольку в них работа возбудителя зависит от режима сети переменного тока. Короткие замыкания в сети, сопровождающиеся понижением напряжения, нарушают нормальную работу системы возбуждения, которая именно в этих случаях должна обеспечить форсировку тока в обмотке ротора генератора.

Рис.6. Принципиальная схема зависимого электромашинного возбуждения

Принципиальная схема возбуждения синхронного генератора с электромашинным возбудительным агрегатом показана на рис.6. Возбудительный агрегат состоит из асинхронного двигателя М, питающегося от шин собственных нужд электростанции и генератора постоянного тока GE. Для повышения надежности работы возбудительного агрегата при форсировке возбуждения асинхронный двигатель, вращающий возбудитель GE, выбирается с необходимой перегрузочной способностью.

Такие возбудительные агрегаты получили широкое распространение на электростанциях в качестве резервных источников возбуждения.

Рис.7. Принципиальная схема полупроводникового самовозбуждения

Один из возможных вариантов схем самовозбуждения с полупроводниковыми преобразователями представлен на рис.7.

Основными элементами схемы являются: две группы полупроводниковых преобразователей – неуправляемые вентили VD и управляемые VS, трансформатор силового компаундирования ТА и выпрямительный трансформатор ТЕ.

Неуправляемые вентили VD получают питание от трансформаторов ТА, вторичный ток которых пропорционален току статора генератора, управляемые вентили VS получают питание от трансформатора ТЕ, вторичное напряжение которого пропорционально напряжению генератора.

Вентили VD, ток которых пропорционален току статора генератора, обеспечивают возбуждение машины при нагрузке и форсировку возбуждения при коротких замыканиях. Мощность вентилей VS рассчитывают таким образом, чтобы она была достаточна для возбуждения генераторов на холостом ходу и для регулирования возбуждения в нормальном режиме. В номинальном режиме неуправляемые вентили обеспечивают 70-80% тока возбуждения генератора. При надлежащем выборе параметров система полупроводникового самовозбуждения по своим свойствам приближается к системе независимого тиристорного (ионного) возбуждения и поэтому применяется на мощных синхронных машинах. Ранее промышленность широко выпускала системы ионного самовозбуждения с ртутными вентилями.

Принцип работы

Ещё со школьной скамьи мы помним, что на провод под напряжением, расположенный между полюсами магнита, действует выталкивающая сила. Происходит это потому, что вокруг проволоки образуется магнитное поле по всей его длине. В результате взаимодействия магнитных полей возникает результирующая «Амперова» сила:

F=B×I×L, где B означает величину магнитной индукции поля, I – сила тока, L – длина провода.

Вектор «Амперовой» всегда перпендикулярен до линий магнитных потоков между полюсами. Схематически принцип работы изображён на рис. 6.


Рис. 6. Принцип работы ДПТ

Если вместо прямого проводника возьмём контурную рамку и подсоединим её к источнику тока, то она повернётся на 180º и остановится в в таком положении, в котором результирующая сила окажется равной 0. Попробуем подтолкнуть рамку. Она возвращается в исходное положение.

Поменяем полярность тока и повторим попытку: рамка сделала ещё пол-оборота. Логично припустить, что необходимо менять направление тока каждый раз, когда соответствующие витки обмоток проходят точки смены полюсов магнитов. Именно для этой цели и создан коллектор.

Схематически можно представить себе каждую якорную обмотку в виде отдельной контурной рамки. Если обмоток несколько, то в каждый момент времени одна из них подходит к магниту статора и оказывается под действием выталкивающей силы. Таким образом, поддерживается непрерывное вращение якоря.

Какой должна быть намотка

Обмотка – это кусок проводника, зафиксированный кольцами в корпусе двигателя. Ее установка требует соблюдения ряда условий:

  • Проволока однородная на всем покрываемом участке;
  • Форма и площадь сечения проводника соответствуют друг другу;
  • Поверх наносится слой изоляции (лака);
  • Соединение должно обеспечивать надежный контакт.

В большинстве случаев схема соединения обмоток двигателя представлена в виде звезды или треугольника, однако существуют и другие варианты. Концы проводников подключают на специальные внешние колодки с клеммами, редко соединения наблюдаются внутри корпуса.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *