Прямой впрыск бензина — gasoline direct injection

Непосредственный впрыск топлива, чем удивишь?

Так в чём же «фишка» непосредственного впрыска?

Эта система относится к инжекторным, и её идея состоит в том, чтобы подавать бензин не во впускной коллектор двигателя, как это реализовано в технологиях с центральным или распределённым впрыском, а распылять его прямо в цилиндры.

Что это нам даёт?

Чтобы разобраться в этом, давайте посмотрим на то, как эксплуатируется силовой агрегат среднестатистического автомобиля. Например, мы едем на нём утром на работу – неспешная езда по городу от светофора к светофору, пробки.

И в данном случае, каким бы мощным ни был мотор в машине, нагрузки он испытывает ниже среднего и работает почти на холостых. Хороший повод сэкономить горючее, а для этого нужно всего ничего – меньше его впрыскивать.

И тут начинается самое интересное. В системах, где бензин подаётся во впускной коллектор, а затем уже в виде воздушно-топливной смеси при открытии клапана попадает в цилиндр, бесконечно уменьшать соотношение бензин-воздух нельзя.

Здесь и проявляются все достоинства непосредственного впрыска. Подавая горючее прямо в цилиндр в чётко выверенный момент времени и под большим давлением, двигатель будет нормально работать при соотношениях до 40:1, а это, согласитесь, ощутимая экономия.

Виды форсунок

Форсунки различаются в зависимости от способа осуществления впрыска топлива. Давайте рассмотрим основные виды форсунок:

  • Электромагнитные форсунки;
  • Электрогидравлические форсунки;
  • Пьезоэлектрические форсунки.

Устройство электромагнитной форсунки

1 — сетчатый фильтр; 2 — электрический разъем; 3 – пружина; 4 — обмотка возбуждения; 5 — якорь электромагнита; 6 — корпус форсунки; 7 — игла форсунки; 8 – уплотнение; 9 — сопло форсунки.

Электромагнитная форсунка нашла свое применение на бензиновых двигателях, в том числе оборудованных системой непосредственного впрыска. Электромагнитной форсунка имеет простую конструкцию, которая включает электромагнитный клапан с иглой и соплом.

Как работает электромагнитная форсунка

Работа электромагнитной форсунки осуществляется в соответствии с заложенным алгоритмом в электронный блок управления. Электронный блок в определенный момент подает напряжение на обмотку возбуждения клапана. Вследствие этого создается электромагнитное поле, которое преодолевая усилие пружины, втягивает якорь с иглой и освобождает сопло форсунки, после чего производится впрыск топлива. Когда напряжение исчезает, пружина возвращает иглу форсунки обратно на седло.

Устройство электрогидравлической форсунки

1 — сопло форсунки; 2 – пружина; 3 — камера управления; 4 — сливной дроссель; 5 — якорь электромагнита; 6 — сливной канал; 7 — электрический разъем; 8 — обмотка возбуждения; 9 — штуцер подвода топлива; 10 — впускной дроссель; 11 – поршень; 12 — игла форсунки.

Электрогидравлическая форсунка применяется на дизельных двигателях. Электрогидравлическая форсунка включает электромагнитный клапан, камеру управления, впускной и сливной дроссели.

Как работает электрогидравлическая форсунка

Работа электрогидравлической форсунки основана на использовании давления топлива при впрыске. В обычном положении электромагнитный клапан закрыт и игла форсунки прижата к седлу силой давления топлива на поршень в камере управления. Давление топлива на иглу меньше давления на поршень, благодаря этому впрыск топлива не происходит.

Когда электронный блок управления дает команду на электромагнитный клапан, открывается сливной дроссель. Топливо вытекает из камеры управления через сливной дроссель в сливную магистраль. Впускной дроссель препятствует выравниванию давлений в камере управления и впускной магистрали, вследствие чего давление на поршень снижается, а давление топлива на иглу форсунки не изменяется. Игла форсунки поднимается и происходит впрыск топлива.

Устройство пьезоэлектрической форсунки

1 — игла форсунки; 2 – уплотнение; 3 — пружина иглы; 4 — блок дросселей; 5 — переключающий клапан; 6 — пружина клапана; 7 — поршень клапана; 8 — поршень толкателя; 9 – пьезоэлектрический элемент; 10 — сливной канал; 11 — сетчатый фильтр; 12 — электрический разъем; 13 — нагнетательный канал.

Пьезофорсунка (пьезоэлектрическая форсунка) является самым совершенным устройством, обеспечивающим впрыск топлива в современных автомобилях. Форсунка применяется на дизельных двигателях с системой впрыска Common Rail. Основные преимущества пьезоэлектрической форсунки в точности дозировки и быстроте срабатывания. Благодаря этому пьезофорсунка обеспечивает многократный впрыск на протяжении одного рабочего цикла.

Как работает пьезофорсунка (пьезоэлектрическая форсунка)

Работа пьезофорсунки основана на изменении длины пьезокристалла при подачи напряжения. Пьезоэлектрическая форсунка состоит из: корпуса, пьезоэлемента, толкателя, переключающего клапана и иглы.

Пьезофорсунка работает по гидравлическому принципу. В обычном положении игла прижата к седлу силой высокого давления топлива. Электронный блок подает электрический сигнал на пьезоэлемент и его длина увеличивается, воздействуя на поршень толкателя, открывает переключающий клапан и топливо поступает в сливную магистраль. Давление над иглой падает, и за счет давления в нижней части игла поднимается, что приводит к впрыску топлива. Количество впрыскиваемого топлива зависит от длительности воздействия на пьезоэлемент и давления топлива в топливной рампе.

Что же лучше — таблица?

Предлагаю подумать, составил таблицу по плюсам того и другого типов

Распределенный (MPI) плюсы Непосредственный (GDI) плюсы
Дешевый Мощнее (около 5%)
Простой Меньший расход (до 10%)
Работают больше без очистки Экологичнее
Не требовательны к качеству топлива
Инжектора проще конструкция

Как видите и тот и другой тип имеют весомые преимущества перед другим, видимо пока существуют оба.

Сейчас видео версия смотрим.

А теперь голосование, как ВЫ считаете что лучше – MPI (распределенный) или GDI (непосредственный)?

НА этом заканчиваю, думаю, моя статья и видео были вам полезны. Читайте наш АВТОБЛОГ, подписывайтесь на обновления.

(11 голосов, средний: 4,55 из 5)

Похожие новости

Можно ли заливать дизельное масло в бензиновый двигатель. Какие .

Расточка блока цилиндров. Зачем нужно двигателю и можно ли сдела.

Двигатели, оснащенные системой распределенной подачей топлива, имеют более высокие показатели экономичного расхода ТС и низкий уровень токсичности отработанных газов.

Кто изобрёл и как развивалась технология прямого или непосредственного впрыска топлива

Технология прямого или непосредственного впрыска топлива изначально разрабатывалась для дизельных двигателей. Примечательно, что в том виде, в котором она существует сейчас, её в начале 20-го века разработал и успешно внедрил русский инженер Вадим Аршаулов.

Немного позже эту технологию внедрили и в бензиновые двигатели, но произошло это отнюдь не в конце 20-го века, как думают некоторые. Эта технология использовалась ещё во времена Второй мировой войны в двигателях истребителей Messerschmitt. Что касается автомобилей, то первым серийным автомобилем с бензиновым двигателем, в котором её применили, стал легендарный Mercedes-Benz 300 SL Gullwing, появившийся в 1954 году.

В то время управление прямым впрыском топлива осуществлялось с помощью механики, что было очень сложно и дорого, в связи с чем в бензиновых двигателях эта технология сразу не прижилась. Однако благодаря развитию электроники, в 1990-х годах автопроизводители решили к ней вернуться.

Система непосредственного впрыска: конструктивные особенности

Итак, давайте в качестве примера возьмем двигатель FSI с его так называемым «послойным» впрыском. Система включает в себя следующие элементы:

  • контур высокого давления;
  • бензиновый ТНВД;
  • регулятор давления;
  • топливную рампу;
  • датчик высокого давления;
  • инжекторные форсунки;

Начнем с топливного насоса. Указанный насос создает высокое давление, под которым топливо подается к топливной рампе, а также на форсунки. Насос имеет плунжеры (плунжеров может быть как несколько, так и один в насосах роторного типа) и приводится в действие от распредвала впускных клапанов.

Кстати, в схеме используется специальный клапан-предохранитель, который стоит в рейке. Указанный клапан нужен для того, чтобы избежать слишком высокого давления топлива и тем самым защитить отдельные элементы системы. Рост давления может возникать по причине того, что горючее имеет свойство расширяться при нагреве.

Датчик высокого давления является устройством, которое измеряет давление в топливной рейке. Сигналы от датчика передаются на ЭБУ (электронный блок управления двигателем), который, в свою очередь, способен изменять давление в топливной рейке.

Если же говорить о системе прямого впрыска, вместе с датчиком высокого давления топлива для ее работы задействованы: датчик коленчатого вала, ДПРВ, датчик положения дроссельной заслонки, воздухорасходомер, датчик температуры воздуха во впускном коллекторе, датчик температуры ОЖ и т.д.

Благодаря работе этих датчиков на ЭБУ поступает нужная информация, после чего блок посылает сигналы на исполнительные устройства. Это позволяет добиться слаженной и точной работы электромагнитных клапанов, форсунок, предохранительного клапана и ряда других элементов.

Как работает система непосредственного впрыска топлива

Главным плюсом непосредственного впрыска является возможность добиться различных типов смесеобразования. Другим словами, такая система питания способна гибко изменять состав рабочей топливно-воздушной смеси с учетом режима работы двигателя, его температуры, нагрузки на ДВС и т.д.

  • Послойное смесеобразование задействуется тогда, когда нагрузки на двигатель низкие или средние, а обороты коленвала небольшие. Если просто, в таких режимах смесь несколько обедняется в целях экономии. Стехиометрическое смесеобразование предполагает приготовление такой смеси, которая легко воспламеняется, при этом не является слишком обогащенной.
  • Гомогенное смесеобразование позволяет получить так называемую «мощностную» смесь, которая нужна при больших нагрузках на двигатель. На обедненной гомогенной смеси в целях дополнительной экономии силовой агрегат работает на переходных режимах.
  • Когда задействован режим послойного смесеобразования, дроссельная заслонка широко открыта, при этом впускные заслонки находятся в закрытом состоянии. В камеру сгорания воздух подается с высокой скоростью, возникают завихрения воздушных потоков. Горючее впрыскивается ближе к концу такта сжатия, впрыск производится в область расположения свечи зажигания.

За короткое время до того, как на свече появится искра, образуется топливно-воздушная смесь, в которой коэффициент избыточного воздуха составляет 1.5-3. Далее смесь воспламеняется от искры, при этом вокруг зоны воспламенения сохраняется достаточно количество воздуха. Указанный воздух выполняет функцию температурного «изолятора».

В этом случае горючее впрыскивается еще на такте впуска, в результате чего удается получить однородную смесь. Избыток воздуха имеет коэффициент, близкий к единице. Такая смесь легко воспламеняется и полноценно сгорает по всему объему камеры сгорания.

Обедненная гомогенная смесь создается тогда, когда дроссельная заслонка полностью открыта, а впускные заслонки закрыты. В этом случае воздух активно движется в цилиндре, а впрыск горючего приходится на такт впуска. ЭСУД поддерживает избыток воздуха на отметке 1.5.

Дополнительно к чистому воздуху могут быть добавлены отработавшие газы. Это происходит благодаря работе системы рециркуляции отработавших газов EGR. В результате выхлоп повторно «догорает» в цилиндрах без ущерба для мотора. При этом снижается уровень выброса вредных веществ в атмосферу.

Основной принцип работы системы MPI

Прежде чем разобраться с терминологией и принципом работы, следует уточнить, что система MPI ставится исключительно на инжектор. Поэтому тем, кто задумывается над возможностью модернизировать свой карбюраторный ДВС, следует подумать над тем, чтобы воспользоваться другими методами гаражного тюнинга.

На европейском рынке модели автомобилей с маркировкой MPI на силовом агрегате – не редкость. Это сокращенное обозначение системы multi-point-injection или многоточечного впрыска топлива.

Самый первый инжектор пришел на смену карбюратору, благодаря чему управление обогащением воздушно-топливной смеси и качеством наполнения цилиндров осуществляется уже не механическими устройствами, а электроникой. Внедрение электронных устройств обусловлено в первую очередь тем, что механические приспособления имеют определенные ограничения по части тонкой подстройки систем.

Электроника справляется с этой задачей намного эффективней. Плюс обслуживание у таких автомобилей не такое частое, и во многих случаях оно сводится к проведению компьютерной диагностике и сбросу выявленных ошибок (подробно эта процедура описана здесь).

Теперь рассмотрим принцип работы, по которому топливо распыляется для формирования ВТС. В отличие от моновпрыска (считается эволюционной модификацией карбюратора), распределенная система оснащена для каждого цилиндра индивидуальной форсункой. Сегодня с ней сравнивается другая эффективная схема – непосредственного впрыска для бензиновых ДВС (в дизельных агрегатах альтернативы нет – в них солярка распыляется непосредственно в цилиндр в завершении такта сжатия).

Для работы топливной системы электронный блок управления собирает данные с многих датчиков (их количество зависит от типа транспортного средства). Ключевой сенсор, без которого не будет работать ни одна современная ТС, это датчик положения коленчатого вала (о нем подробно рассказывается в другом обзоре).

В такой системе топливо подается на форсунку под давлением. Распыление происходит во впускной коллектор (подробно о системе впуска читайте здесь), как и в случае с карбюратором. Только распределение и смешивание топлива с воздухом происходит намного ближе к впускным клапанам газораспределительного механизма.

Когда выходит из строя определенный датчик, в блоке управления активируется определенный алгоритм аварийного режима (какой именно это зависит от сломавшегося датчика). При этом на приборной панели автомобиля загорается сообщение Check Engine или значок мотора.

Виды систем распределенного впрыска

Современные системы распределенного типа подачи топлива разделены на несколько видов:

  • По принципу работы – системы импульсной и непрерывной подачи ТС;
  • По способу управления – системы на механическом и электронном типе управления;
  • По времени открытия топливных форсунок – системы с попарно-параллельным впрыском (при подаче топлива попарно), одновременным впрыском (при одновременной подаче топлива во все форсунки), фазированным впрыском (при индивидуальной подаче топлива для каждой форсунки), прямым впрыском (подача топлива осуществляется в камеру сгорания цилиндра, минуя впускной коллектор).

Наиболее распространенными системами распределенной подачи ТС являются системы KE-Jetronic, K-Jetronic и L-Jetronic, разработанные компанией Bosch.

Система K-Jetronic относится к механическим топливным системам с непрерывной подачей ТС.

Система типа KE-Jetronic одна из разновидностей механической топливной системы непрерывного типа с электронным способом управления.

Система L-Jetronic представляет собой систему импульсной подачи топлива с электронным типом управления.

Система распределенной подачи ТС состоит из следующих подсистем и компонентов:

  • систем подачи и очистки топлива и воздуха;
  • системы сжигания бензиновых испарений;
  • системы выпуска и сжигания отработанных газов;
  • электронного блока управления с входными датчиками

Режимы работы MPI

Распределенный впрыск может работать в разных режимах. Все зависит от программного обеспечения, которое установлено в микропроцессоре блока управления, а также от модификаций форсунок. Каждый тип распыления бензина имеет свои особенности работы. Если коротко, то работа каждого из них сводится к следующему:

  • Режим одновременного впрыска. Такой тип инжекторов уже давно не используется. Принцип следующий. Микропроцессор настроен на синхронное распыление бензина одновременно во все цилиндры. Система настроена так, чтобы при начале такта впуска в одном из цилиндров инжектор впрыскивал топливо во все патрубки впускного коллектора. Минус такой схемы в том, что 4-тактовый мотор будет работать от последовательного срабатывания цилиндров. Когда один поршень выполняет такт впуска, в остальных работает другой процесс (сжатие, рабочий ход и выпуск), поэтому топливо нужно исключительно для одного котелка за весь цикл двигателя. Остальной бензин просто находился во впускном коллекторе, пока не откроется соответствующий клапан. Такая система использовалась в 70-80-х годах прошлого столетия. В те времена бензин стоил дешево, поэтому его перерасход мало кого беспокоил. Также из-за чрезмерного обогащения смесь не всегда качественно сгорала, и поэтому в атмосферу выбрасывалось большое количество вредных веществ.
  • Попарный режим. В этом случае инженеры сократили расход топлива путем сокращения количества цилиндров, которые одновременно получают требуемую порцию бензина. Благодаря такому улучшению получилось сократить вредные выбросы, а также расход топлива.
  • Последовательный режим или распределение топлива по фазам ГРМ. На современных машинах, которые получают распределительный тип топливной системы, применяется данная схема. В этом случае электронный блок управления будет управлять каждой форсункой отдельно. Чтобы процесс сгорания ВТС был максимально эффективным, электроника обеспечивает небольшое опережение впрыска, прежде чем откроется впускной клапан. Благодаря этому в цилиндр поступает уже готовая смесь воздуха и топлива. Распыление производится через одну форсунку за полный цикл мотора. В четырехцилиндровом ДВС топливная система срабатывает идентично системе зажигания обычно в последовательности 1/3/4/2.

Последняя система зарекомендовала себя приличной экономичностью, а также высоким показателем экологичности. По этой причине для улучшения впрыска бензина разрабатываются разные модификации, в основу которых лег принцип работы фазированного распределения.

Среди производителей топливных систем, обеспечивающих распределительный впрыск бензина, компания Bosch занимает ведущие позиции. В ассортименте продукции имеется три разновидности ТС:

  1. K-Jetronic. Это механическая система, распределяющая бензин по распылителям. Срабатывает она непрерывно. В транспортных средствах, производимых концерном BMW, такие моторы имели аббревиатуру MFI.
  2. KE-Jetronic. Данная система является модификацией предыдущей, только управление процессом осуществляется при помощи электроники.
  3. L—Jetronic. Данная модификация оснащается мдп-форсунками, которые обеспечивают импульсную подачу топлива при конкретном давлении. Особенность такой модификации заключается в том, что работа каждого распылителя корректируется в зависимости от настроек, запрограммированных в ЭБУ.

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ (на примере электронной системы распределенного впрыска)

В современных впрысковых двигателях для каждого цилиндра предусмотрена индивидуальная форсунка. Все форсунки соединяются с топливной рампой, где топливо находится под давлением, которое создает электробензонасос. Количество впрыскиваемого топлива зависит от продолжительности открытия форсунки. Момент открытия регулирует электронный блок управления (контроллер) на основании обрабатываемых им данных от различных датчиков.

Датчик массового расхода воздуха служит для расчета циклового наполнения цилиндров. Измеряется массовый расход воздуха, который потом пересчитывается программой в цилиндровое цикловое наполнение. При аварии датчика его показания игнорируются, расчет идет по аварийным таблицам.

Датчик положения дроссельной заслонки служит для расчета фактора нагрузки на двигатель и его изменения в зависимости от угла открытия дроссельной заслонки, оборотов двигателя и циклового наполнения.

Датчик температуры охлаждающей жидкости служит для определения коррекции топливоподачи и зажигания по температуре и для управления электровентилятором. При аварии датчика его показания игнорируются, температура берется из таблицы в зависимости от времени работы двигателя.

Датчик положения коленчатого вала служит для общей синхронизации системы, расчета оборотов двигателя и положения коленвала в определенные моменты времени. ДПКВ — полярный датчик. При неправильном включении двигатель заводится не будет. При аварии датчика работа системы невозможна. Это единственный «жизненно важный» в системе датчик, при котором движение автомобиля невозможно. Аварии всех остальных датчиков позволяют своим ходом добраться до автосервиса.

Датчик кислорода предназначен для определения концентрации кислорода в отработавших газах. Информация, которую выдает датчик, используется электронным блоком управления для корректировки количества подаваемого топлива. Датчик кислорода используется только в системах с каталитическим нейтрализатором под нормы токсичности Евро-2 и Евро-3 (в Евро-3 используется два датчика кислорода- до катализатора и после него).

Датчик детонации служит для контроля за детонацией. При обнаружении последней ЭБУ включает алгоритм гашения детонации, оперативно корректируя угол опережения зажигания.

Здесь перечислены только некоторые основные датчики, необходимые для работы системы. Комплектации датчиков на различных автомобилях зависят от системы впрыска, от норм токсичности и пр.

Про результатам опроса определенных в программе датчиков, программа ЭБУ осуществляет управление исполнительными механизмами, к которым относятся: форсунки, бензонасос, модуль зажигания, регулятор холостого хода, клапан адсорбера системы улавливания паров бензина, вентилятор системы охлаждения и др. (все опять же зависит от конкретной модели)

Из всего перечисленного, возможно, не все знают, что такое адсорбер. Адсорбер является элементом замкнутой цепи рециркуляции паров бензина. Нормами Евро-2 запрещен контакт вентиляции бензобака с атмосферой, пары бензина должны собираться (адсорбироваться) и при продувке посылаться в цилиндры на дожиг. На неработающим двигателе пары бензина попадают в адсорбер из бака и впускного коллектора, где происходит их поглощение. При запуске двигателя адсорбер по команде ЭБУ продувается потоком воздуха, всасываемого двигателем, пары увлекаются этим потоком и дожигаются в камере сгорания.

Распределенный

ИЛИ МНОГОТОЧЕЧНЫЙ впрыск топлива – сегодня самая распро¬страненная система питания двигателей на современных автомобилях. От предыдуще¬го типа она отличается прежде всего тем, что во впускном коллекторе каждого цилиндра стоит индивидуальная форсунка. В определенные моменты времени она впрыскивает необходимую порцию бензина прямо на впускные клапаны “своего” цилиндра.

Многоточечный впрыск бывает параллельным и последовательным. В первом случае в определенный момент времени срабатывают все форсунки, топливо перемешивается с воздухом, и получившаяся смесь ждет открытия впускных клапанов, чтобы попасть в цилиндр. Во втором случае период работы каждого инжектора рассчитывается индивидуально, чтобы бензин подавался за строго определенное время перед открытием клапана. Эффективность такого впрыска выше, поэтому большее распространение получили именно последовательные системы, несмотря на более сложную и дорогую электронную “начинку”. Хотя иногда встречаются и более дешевые комбинированные схемы (форсунки в этом случае срабатывают попарно).

Поначалу системы распределенного впрыска тоже управлялись механически. Но со временем электроника и здесь одержала верх. Ведь, получая и обрабатывая сигналы от множества датчиков, блок управления не только командует исполнительными механизмами, но и может сигнализировать водителю о неисправности. Причем даже в случае поломки электроника переходит на аварийный режим работы, позволяя автомобилю самостоятельно добраться до сервисной станции.

Распределенный впрыск обладает целым рядом достоинств. Помимо приготовления горючей смеси правильного состава для каждого режима работы двигателя такая система вдобавок точнее распределяет ее по цилиндрам и создает минимальное сопротивление проходящему по впускному коллектору воздуху. Это позволяет улучшить многие показатели мотора: мощность, экономичность, экологичность и т.д. Из недостатков многоточечного впрыска можно назвать, пожалуй, лишь только довольно высокую стоимость.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *