Виды зубчатых колес, шестерен
Содержание:
- Формула расчета параметров прямозубой передачи
- Цилиндрические зубчатые колёса
- Зубчатые передачи. Их достоинство и недостатки. область применение, классификации.
- Ведомая коническая шестерня — Большая Энциклопедия Нефти и Газа, статья, страница 2
- Механизмы зубчатых передач
- Описание и виды шестерёнок
- Общее определение
Формула расчета параметров прямозубой передачи
Чтобы определить параметры прямозубой шестеренки, потребуется выполнить некоторые предварительные вычисления. Длина начальной окружности равна π×D, где D — ее диаметр.
Расчет модуля зубчатого колеса
Шаг зацепления t – это расстояние между смежными зубами, измеренное по начальной окружности. Если это расстояние умножить на число зубов z, то мы должны получить ее длину:
проведя преобразование, получим:
Если разделить шаг на число пи, мы получим коэффициент, постоянный для данной детали зубчатой передачи. Он и называется модулем зацепления m.
размерность модуля шестерни — миллиметры. Если подставить его в предыдущее выражение, то получится:
выполнив преобразование, находим:
Отсюда вытекает физический смысл модуля зацепления: он представляет собой длину дуги начальной окружности, соответствующей одному зубцу колеса. Диаметр окружности выступов De получается равным
где h’- высота головки.
Высоту головки приравнивают к m:
Проведя математические преобразования с подстановкой, получим:
Диаметр окружности впадин Di соответствует De за вычетом двух высот основания зубца:
где h“- высота ножки зубца.
Для колес цилиндрического типа h“ приравнивают к значению в 1,25m:
Устройство зубчатого колеса
Выполнив подстановку в правой части равенства, имеем:
что соответствует формуле:
и если выполнить подстановку, то получим:
Иначе говоря, головка и ножка зубца относятся друг к другу по высоте как 1:1,25.
Следующий важный размер, толщину зубца s принимают приблизительно равной:
- для отлитых зубцов: 1,53m:
- для выполненных путем фрезерования-1,57m, или 0,5×t
Поскольку шаг t приравнивается к суммарной толщине зубца s и впадины sв, получаем формулы для ширины впадины
- для отлитых зубцов: sв=πm-1,53m=1,61m:
- для выполненных путем фрезерования- sв= πm-1,57m = 1,57m
Характеристики конструкции оставшейся части зубчатой детали определяются следующими факторами:
- усилия, прикладываемые к детали при эксплуатации;
- конфигурация деталей, взаимодействующих с ней.
Детальные методики исчисления этих параметров приводятся в таких ВУЗовских курсах, как «Детали машин» и других. Модуль шестерни широко используется и в них как один из основных параметров.
Для отображения шестеренок методами инженерной графики используются упрощенные формулы. В инженерных справочниках и государственных стандартов можно найти значения характеристик, рассчитанные для типовых размеров зубчатых колес.
Цилиндрические зубчатые колёса
Как видно из таблицы прямозубыми могут быть как цилиндрические, так и конические колёса.
Прямозубые колёса применяют в следующих случаях:
1) при невысоких и средних окружных скоростях,
2) при большой твёрдости зубьев (когда динамические нагрузки от неточностей изготовления невелики по сравнению с полезными),
3) также применяются в открытых и планетарных передачах.
а) прямозубое колесо,
б) косозубое колесо,
в) шевронное колесо
Хотя максимальные окружные скорости прямозубых колёс могут доходить до 15 м/с, наиболее часто применяются скорости до 5 м/с. Одним из достоинств прямозубой передачи является отсутствие осевых усилий.
Косозубая передача используется обычно в следующих случаях:
1) если нельзя подобрать цилиндрическую прямозубую пару со стандартным модулем при заданных межосевом расстоянии и передаточном отношении;
2) в случае необходимости иметь малое колесо с небольшим числом зубьев при одновременно высоких требованиях к плавности и равномерности передачи;
3) при повышенных окружных скоростях колёс (при средних и высоких скоростях) и требованиях в отношении бесшумности передачи;
4) при больших передаточных отношениях
Косозубые и шевронные зубчатые колёса в зависимости от качества изготовления могут применяться при окружных скоростях до 30 м/с. Косозубые передачи иногда используются при малых окружных скоростях. Это объясняется некоторыми их преимуществами перед прямозубыми: одновременно в зацеплении находится несколько зубьев, передача вращения происходит более плавно, уменьшаются динамические нагрузки, возникающие вследствие неточности изготовления колёс. Кроме того, изготовление косозубых колёс не требует специального оборудования и оснастки. Одним из недостатков косозубых колёс является наличие осевого усилия, что вызывает необходимость усиления подшипниковых узлов и вала. Поэтому при больших осевых усилиях при передачи больших мощностей рационально применение более сложных шевронных передач, в которых осевые усилия скомпенсированы.
Цилиндрические передачи с косозубыми (винтовыми) колёсами могут быть как с параллельными осями колёс, так и с пересекающимися.
Вариант с пересекающимися осями колёс возможен в следующих случаях.
1. Оси колёс скрещиваются под углом 90º. В этом случае угол наклона зубьев ведущего колеса больше, чем у ведомого.
2. Оси скрещиваются под углом не равным 90º. В этом случае угол наклона зубьев ведущего колеса больше, чем угол наклона зубьев ведомого колеса. Возможны три сочетания колёс:
а) ведущее колесо винтовое, ведомое — прямозубое;
б) зубья обоих колес винтовые одного направления;
в) зубья обоих колес винтовые разного направления.
Цилиндрические передачи с внутренним зацеплением
По сравнению с передачами наружного зацепления цилиндрические передачи с внутренним зацеплением имеют во много раз меньшее относительное скольжение рабочих поверхностей зубьев, меньшее удельное давление между рабочими поверхностями зубьев и меньшие размеры при сравнительно большом передаточном отношении и малом межцентровом расстоянии. Однако они не получили большого распространения, поскольку они более сложны в изготовлении и при их применении не обеспечивается достаточная жесткость валов вследствие консольного расположения колеса и шестерни.
Корригирование цилиндрических зубчатых колёс
Цилиндрические зубчатые колёса могут быть как со смещением исходного контура, так и без смещения исходного контура. Эвольвентное зубчатое зацепление обладает ценным свойством: допускает успешную работу передачи и при изменении расстояния между центрами. Возможно три положения шестерни по отношению к колесу: нормальное, сближенное и раздвинутое. Таким образом, эвольвентное зацепление допускает использование для образования профиля зубьев различных участков эвольвенты, что даёт возможность осуществлять сдвиги профиля как при неизменном расстоянии между центрами (высотная коррекция), так и при раздвинутых или сближенных центрах (угловая коррекция).
Смещение исходного контура является одним из видов модификации профилей зубьев (корригирования). Преимущества эвольвентного зацепления при использовании корригирования:
— уменьшается минимально допустимое число зубьев (увеличивается модуль при том же диаметре шестерни);
— повышается прочность (особенно изгибная, так как зуб утолщается у основания);
— повышается плавность эвольвентных передач.
К недостаткам коррегирования можно отнести уменьшение коэффициента перекрытия.
Зубчатые передачи. Их достоинство и недостатки. область применение, классификации.
Зубчатые передачи. Зубчатая передача — это механизм или часть механизма в состав которого входят зубчатые колёса. Движение пе-редаётся с помощью зацепления пары зубчатых колёс. Меньшее зубчатое колесо принято называть шестерней, большее – колесом. Параметрам шестерни приписывают индекс 1, параметрам колеса – индекс 2.
Достоинства и недостатки зубчатых передач
Достоинства зубчатых передач: • Возможность применения в широком диапазоне скоростей, мощностей и передаточных отношений. • Высокая нагрузочная способность и малые габариты. • Большая долговечность и надёжность работы. • Постоянство передаточного отношения. • Высокий КПД (87-98%). • Простота обслуживания. Недостатки зубчатых передач: • Большая жёсткость не позволяющая компенсировать динамические нагрузки. • Высокие требования к точности изготовления и монтажа. • Шум при больших скоростях.
Классификация зубчатых передач
По передаточному отношению: • с постоянным передаточным отношением; • с переменным передаточным отношением. По форме профиля зубьев: • эвольвентные; • круговые (передачи Новикова); • циклоидальные. По типу зубьев: • прямозубые; • косозубые; • шевронные; • криволинейные. По взаимному расположению осей валов: • с параллельными осями (цилиндрические передачи с прямыми, косыми и шевронными зубьями); • с пересекающимися осями (конические передачи); • с перекрещивающимися осями. По форме начальных поверхностей: • цилиндрические; • конические; • гиперболоидные; По окружной скорости колёс: • тихоходные; • среднескоростные; • быстроходные. По степени защищенности: • открытые; • закрытые. По относительному вращению колёс и расположению зубьев: • внутреннее зацепление (вращение колёс в одном направлении); • внешнее зацепление (вращение колёс в противоположном направлении).
Виды разрушений зубьев
2. Заедание зубьев наблюдается в высоконагруженных и высокоскоростных зубчатых, а также червячных передачах
В местах контакта из-за трения развивается высокая температура, способствующая снижению вязкости масла, разрыву масляной пленки и образованию металлического контакта зубьев. Происходит молекулярное сцепление (микросварка) частиц металла. Растет сопротивление вращению, наросты металла на зубьях задирают рабочие поверхности сопряженных зубьев.
3. Поломка зубьев. Причина – напряжение изгиба σF. Это основной вид разрушения высокотвердых
(Н ≥ 56 HRC)и открытых передач. В открытых передачах в результате плохой смазки и абразивного истирания поверхностей зубьев от грязи выкрашивание не успевает развиться, но уменьшаются размеры сечений зубьев, растут напряжения изгиба σF. Возрастают зазоры, удары, шум. Усталостная поломка в этом случае связана с развитием трещин 3 на растянутой стороне ножки зуба (рис.4.3, б). В высокотвердых передачах зубья хрупкие, поверхность их имеет хорошее сопротивление выкрашиванию, но хуже противостоит прогрессирующему трещинообразованию в основании зуба.
4. Смятие рабочих поверхностей (пластические сдвиги) или хрупкое разрушение
(Н ≥ 56 HRC)зубьев при кратковременных значительных перегрузках или ударном приложении нагрузки.
5. Отслаивание твердого поверхностного слоя при значительных контактных напряжениях и зарождении усталостных трещин в глубине под упрочненным слоем.
Ведомая коническая шестерня — Большая Энциклопедия Нефти и Газа, статья, страница 2
Ведомая коническая шестерня
Вал с ведомой конической шестерней установлен в картере на роликовых подшипниках. С торцов вала имеются прокладки для регулировки подшипников. При правильном зацеплении боковой зазор у широкой части зуба должен быть равен 0 15 — 0 4 мм. Вал ведомой конической шестерни выполнен вместе с ведущей 10 цилиндрической шестерней. В картере главной передачи имеется три кармана. При вращении шестерен в них попадает масло, которое по каналам поступает к подшипникам, а оттудв опять в картер.
В автомобиле МАЗ-200 ведомая коническая шестерня запрес-ювывается на промежуточный вал на шпонку, до упора в торец веду-цей цилиндрической шестерни. Промежуточный вал в этих автомсби-шх вращается на двух конических роликовых подшипниках, внешние сольца которых устанавливаются в крышках. Внутренние кольца юдшипников запрессовываются на шейки вала, под крышки ( гнезда) юдшипников ставят регулировочные прокладки.
В автомобиле ГАЗ-51 ведомая коническая шестерня приклепывается к фланцу левой чашки дифференциала.
Регулировку подшипников вала ведомой конической шестерни производят уменьшением количества прокладок, установленных под фланцем левого гнезда подшипника. В стандартный комплект входят прокладки толщиной 0 1; 0 15; 0 2 и 0 5 мм, устанавливаемые по потребности. Осевой зазор в подшипниках определяют индикатором при осевом перемещении шестерни.
Головки заклепок крепления ведомой конической шестерни должны иметь геометрически правильную форму без перекосов, наплывов и трещин. Подшипники вала ведущей цилиндрической шестерни должны быть отрегулированы с предварительным натягом.
Соответственно изменено положение подшипников ведомой конической шестерни и ряда деталей, установленных на заднем мосту.
Наружные кольца роликовых подшипников ведомой конической шестерни при постановке ее в картер автомобиля ЗИЛ-150 устанавливают в крышке редуктора д упора. Роликовые подшипники смазывают солидолом, регулируют их с предварительным натягом — по усилию на прокручивание шестерни. Под каждую крышку картера редуктора устанавливают по одной прокладке толщиной 0 05 — 0 10 мм, остальные-по мере надобности.
При регулировке зацепления шестерен ведомую коническую шестерню перемещают относительно ведущей путем перестановки прокладок 2 и 5, а ведущую относительно ведомой — изменением количества прокладок 5 под корпусом подшипников вала ведущей конической шестерни. Боковой зазор между зубьями конической пары у новой главной передачи должен быть 0 24 — 0 48 мм.
При регулировке зацепления шестерен ведомую коническую шестерню перемещают относительно ведущей путем перестановки прокладок 2 и 5, а ведущую относительно ведомой — изменением количества прокладок 8 под корпусом подшипников вала ведущей конической шестерни. Боковой зазор между зубьями конической пары у новой главной передачи должен быть равным 0 24 — 0 48 мм.
На одном валу с ведомой конической шестерней 12 механизма реверса закреплена цилиндрическая распределительная шестерня 14, находящаяся в постоянном зацеплении с шестернями 15 и 16, свободно сидящими на своих валах.
Величина предварительного натяга конических подшипников ведомой конической шестерни должна быть в пределах 0 03 — 0 05 мм. Регулировка подшипников производится за счет изменения прокладок под крышками ( гнездами) подшипников.
Перед сборкой шестерен следует нагреть ведомую коническую шестерню до температуры 120 — 160 С и собрать в горячем состоянии.
Коробка дифференциала / приводится через ведомую коническую шестерню 2 главной передачи.
Страницы: 1 2 3 4
Механизмы зубчатых передач
Зубчатые зацепления применяются для передачи вращательного движения от двигателя к исполнительному органу.
Для всего этого служат различные виды передач. Классификация видов зубчатых передач по расположению осей вращения:
- Цилиндрическая передача состоит из колёсной пары обычно с разным числом зубьев. Оси зубчатых колёс в цилиндрической передаче параллельны. Отношение чисел зубьев называется передаточным отношением. Малое зубчатое колесо называется шестернёй, большое — колесом. Если шестерня ведущая, а передаточное число больше единицы, то говорят о понижающей передаче. Частота вращения колеса будет меньше частоты вращения шестерни. Одновременно при уменьшении угловой скорости увеличивается крутящий момент на валу. Если передаточное число меньше единицы, то это повышающая передача.
- Коническое зацепление. Характеризуется тем, что оси зубчатых колёс пересекаются и вращение передаётся между валами, которые расположены под определённым углом. В зависимости от того, какое колесо в передаче ведущее, они тоже могут быть повышающими и понижающими.
- Червячная передача имеет скрещивающиеся оси вращения. Большие передаточные числа получаются из-за соотношения числа зубьев колеса и числа заходов червяка. Червяки используются одно-, двух- или четырехзаходные. Особенностью червячной передачи является передача вращения только от червяка к червячному колесу. Обратный процесс невозможен из-за трения. Система самотормозящаяся. Этим обусловлено применением червячных редукторов в грузоподъёмных механизмах.
- Реечное зацепление. Образовано зубчатым колесом и рейкой. Преобразует вращательное движение в поступательное и наоборот.
- Винтовая передача. Применяется при перекрещивающихся валах. Из-за точечного контакта зубья зацепления подвержены повышенному износу под нагрузкой. Применяются винтовые передачи чаще всего в приборах.
- Планетарные передачи — это зацепления, в которых применяются зубчатые колёса с подвижными осями. Обычно имеется неподвижное наружное колесо с внутренней резьбой, центральное колесо и водило с сателлитами, которые перемещаются по окружности неподвижного колеса и вращают центральное. Вращение передаётся от водила к центральному колесу или наоборот.
Нужно различать наружное и внутреннее зацепление. При внутреннем зацеплении зубья большего колеса располагаются на внутренней поверхности окружности, и вращение происходит в одном направлении. Это основные виды зацеплений.
https://youtube.com/watch?v=j1Vua1zOZ78
Описание и виды шестерёнок
Шестерня – это колесо (диск) с зубьями (другим словом – зубчатое колесо (ЗК)), которое крепится ко вращающейся оси. Она может быть, как с конической, так и с цилиндрической поверхностью. Шестерёнчатые передачи подразделяются (в зависимости от линии зуба) на следующие виды:
Прямозубые. Это самые применяемые из всех видов ЗК, у которых зубья располагаются в радиальных плоскостях.
Скошенные (косозубые) , используемые в электрических и бензо инструментах (лобзиках, ножовки…). В этих деталях зубья располагаются под углом ко вращающейся оси.
Червячные (спиральные) используются для рулевого управления автомобилем.
Винтовые имеют цилиндрическую форму, зубья располагаются по линии винта. Используются на валах, расположенных перпендикулярно относительно друг друга.
С круговыми зубьями , которые имеют линию окружности радиуса, за счёт чего контакт передачи осуществляется лишь в одной точке (на линии зацепления), расположенной параллельно осям зубчатого кольца.
С внутренним зацеплением , в которых «зубы» нарезаны внутри. Применяются в приводе танковой башни, в планетарных механизмах, насосах…
Секторные являются частью шестерни различного типа, что значительно экономит габариты. Применяется в таких передачах, где не нужно вращение ЗК.
Есть ещё немало других видов этих деталей, каждая из которых может выполнять определённую функцию.
Область применения и принцип действия
ЗК считается одной из важнейших деталей, применяемых в механизмах с зубчатой передачей, как в сложных, так и в простых. Их применяют в машиностроении, пищевой и горнодобывающей промышленности, в судостроении, в подъёмных кранах, коробках передач, лебёдках, танках, буровых установках…
Зубчатые колёса применяются парно и работают при помощи зубьев, цепляясь за соседние, благодаря чему и выполняется основная функция ЗК – передача вращательных движений между валами.
Каждая из шестерён имеет своё число зубьев. Разница в количестве зубьев шестерни необходима для возможности преобразования числа оборотов вала и крутящего момента, то есть для передачи или изменения КМ от ведущего к ведомому ЗК. Ведущей называется та шестерня, к которой крутящий момент подводится снаружи, а ведомая – та, с коей он снимается.
При этом, когда диаметр ведущей детали меньше, чем у ведомой – КМ увеличивается пропорционально уменьшению скорости вращения, а в обратном случае (диаметр ведомой меньше ведущего) – наоборот. Кроме того, нужно знать то, что от числа зубьев на шестерёнке зависит плавность хода передачи (больше зубьев – плавный ход, и наоборот).
Износ шестерни (откалывание зубцов) влечёт за собой необходимость её замены, так как ремонту деталь не подлежит.
Поверхности, входящими в зацепление с зубьями другого зубчатого колеса. В машиностроении принято малое ведущее зубчатое колесо независимо от числа зубьев называть шестернёй
, а большое ведомое — колесом. Однако часто все зубчатые колёса называют шестерня́ми.
Зубчатые колёса обычно используются па́рами с разным числом зубьев с целью преобразования вращающего момента и числа оборотов вала на выходе. Колесо, к которому вращающий момент подводится извне, называется ведущим, а колесо, с которого момент снимается — ведомым. Если диаметр ведущего колеса меньше, то вращающий момент ведомого колеса увеличивается за счёт пропорционального уменьшения скорости вращения, и наоборот.
Следует заметить, что зубчатая передача не является усилителем механической мощности, так как общее количество механической энергии на её выходе не может превышать количество энергии на входе. Это связано с тем, что механическая работа в данном случае будет пропорциональна произведению вращающего момента на скорость вращения . В соответствии с передаточным отношением , увеличение крутящего момента будет вызывать пропорциональное уменьшение угловой скорости вращения ведомой шестерни, а их произведение останется неизменным. Данное соотношение справедливо для идеального случая, не учитывающего потери на трение и другие эффекты, характерные для реальных устройств.
Общее определение
Наглядный пример изменения числа оборотов проще всего наблюдать на простом велосипеде. Человек медленно крутит педали. Колесо вращается значительно быстрее. Изменение количества оборотов происходит за счет 2 звездочек, соединенных в цепь. Когда большая, вращающаяся вместе с педалями, делает один оборот, маленькая, стоящая на задней ступице, прокручивается несколько раз.
Передачи с крутящим моментом
В механизмах используют несколько видов передач, изменяющих крутящий момент. Они имеют свои особенности, положительные качества и недостатки. Наиболее распространенные передачи:
Ременная передача самая простая в исполнении. Используется при создании самодельных станков, в станочном оборудование для изменения скорости вращения рабочего узла, в автомобилях.
Ремень натягивается между 2 шкивами и передает вращение от ведущего в ведомому. Производительность низкая, поскольку ремень скользит по гладкой поверхности. Благодаря этому, ременной узел является самым безопасным способом передавать вращение. При перегрузке происходит проскальзывание ремня, и остановка ведомого вала.
Передаваемое количество оборотов зависит от диаметра шкивов и коэффициента сцепления. Направление вращения не меняется.
На ремне имеются выступы, на шестерне зубчики. Такой тип ремня расположен под капотом автомобиля и связывает звездочки на осях коленвала и карбюратора. При перегрузе ремень рвется, так как это самая дешевая деталь узла.
Цепная состоит из звездочек и цепи с роликами. Передающееся число оборотов, усилие и направление вращения не меняются. Цепные передачи широко применяются в транспортных механизмах, на конвейерах.
Характеристика зубчатой передачи
В зубчатой передаче ведущая и ведомая детали взаимодействуют непосредственно, за счет зацепления зубьев. Основное правило работы такого узла – модули должны быть одинаковыми. В противном случае механизм заклинит. Отсюда следует, что диаметры увеличиваются в прямой зависимости от количества зубьев. Одни значения можно в расчетах заменить другими.
Например, между осями или точками на эвольвенте по средней линии Размер модуля состоит из ширины зуба и промежутка между ними. Измерять модуль лучше в точке пересечения линии основания и оси зубца. Чем меньше радиус, тем сильнее искажается промежуток между зубьями по наружному диаметру, он увеличивается к вершине от номинального размера. Идеальные формы эвольвенты практически могут быть только на рейке. Теоретически на колесе с максимально бесконечным радиусом.
Деталь с меньшим количеством зубьев называют шестерней. Обычно она ведущая, передает крутящий момент от двигателя.
Зубчатое колесо имеет больший диаметр и в паре ведомое. Оно соединено с рабочим узлом. Например, передает вращение с необходимой скоростью на колеса автомобиля, шпиндель станка.
Обычно посредством зубчатой передачи уменьшается количество оборотов и увеличивается мощность. Если в паре деталь, имеющая больший диаметр, ведущая, на выходе шестерня имеет большее количество оборотов, вращается быстрее, но мощность механизма падает. Такие передачи называют понижающими.
Зачем нужна паразитка
При взаимодействии шестерни и колеса происходит изменение сразу нескольких величин:
- количества оборотов;
- мощности;
- направление вращения.
Только в планетарных узлах с нарезкой зубьев по внутреннему диаметру венца сохраняется направление вращения. При наружном зацеплении ставится две одинаковые шестерни подряд. Их взаимодействие не меняет ничего, кроме направления движения. В этом случае обе зубчатые детали называются шестернями, колеса нет. Вторая, промежуточная, получила название «паразитка», поскольку в вычислениях не участвует, меняет только знак.
Виды зубчатых соединений
Зубчатое зацепление может иметь различную форму зуба на деталях. Это зависит от исходной нагрузки и расположения осей сопрягаемых деталей. Различают виды зубчатых подвижных соединений:
Самое распространенное и простое в исполнении прямозубое зацепление. Наружная поверхность зуба цилиндрическая. Расположение осей шестерни и колеса параллельное. Зуб расположен под прямым углом к торцу детали.