Аэродинамика автомобиля. что это такое? как это работает?

Подъемная и прижимная сила

В результате неравномерного обтекания потоком воздуха автомобиля с разных сторон возникает разница в скорости его движения.

Действующие подъемная и прижимная силы

Автомобиль движется и рассекает поток воздуха, при этом часть этого потока уходит под авто и проходит под днищем, то есть движется практически по прямой. А вот верхней части потока приходится повторять форму кузова, и ей приходится проходить большее расстояние. Из-за этого возникает разница в скорости воздуха – верхняя часть движется быстрее нижней, проходящей под авто. А поскольку увеличение скорости сопровождается снижением давления, то под днищем образуется зона повышенного давления, которая приподнимает машину.

Проблем добавляет и лобовое сопротивление. Область повышенного давления воздушной массы перед машиной прижимает передок к дороге, в то время как разрежение и завихрения позади наоборот – способствуют приподнятию кузова. Подъемная сила, как и лобовое сопротивление, возрастает при увеличении скорости движения.

Негативным фактором от воздействия такой силы является ухудшение устойчивости авто при увеличении скорости и повышение вероятности ухода в занос.

Но эта сила может оказывать и положительное действие. При внесении корректив в конструкцию авто возможно преобразование подъемной силы в прижимную, которая будет обеспечивать лучшее сцепление с дорогой, устойчивость авто, его управляемость на высоких скоростях.

При этом для получения прижимной силы не требуется каких-либо отдельных решений. Все разработки, направленные на снижение коэффициента Сх также сказываются и на прижиме. К примеру, оптимизация формы задней части приводит к уменьшению завихрений и разрежения, из-за чего подъемная сила тоже снижается, а прижимная — повышается. Установка заднего спойлера действует таким же образом.


Уменьшение завихрений при установке спойлера

Боковые же силы при установлении аэродинамики автомобиля, особо в расчет не берутся, в силу того, что они не постоянны, а также значительного влияния на показатели авто не оказывают.

Но это все теория аэродинамики автомобиля. На практике все можно пояснить одним предложением — чем хуже аэродинамика, тем выше расход топлива.

Несколько слов о самом движении

Хотим мы этого или нет, но машине при движении требуется преодолевать противодействие внешней среды. На нее действуют силы тяжести, инерции, сцепления с дорожным полотном, трения сопротивления качения, но для нас сейчас более интересны те из них, которые имеют отношение к аэродинамике. Для автомобиля с этой точки зрения актуальны:

  • сила сопротивления среды;
  • подъемная сила, образованная воздушным потоком;
  • прижимная сила.

Именно их соотношение (равнодействующая) определяет устойчивость, маневренность и экономичность автомобиля на дороге. Величина отмеченных сил во многом зависит от параметров движения. Сопротивление, оказываемое встречным потоком, определяется квадратом скорости и соответствующими коэффициентами. Но характер поведения других сил, обусловленных аэродинамикой, более сложный.

При разгоне и движении ТС, препятствующий этому воздух делится на несколько потоков. Один из них обтекает машину сверху и прижимает ее к дороге. Другой проходит под днищем, по закону Бернулли он является более плотным и приподнимает машину, а остальные обтекают ее с боков.

Это самое краткое и минимальное описание сил аэродинамики. Как пример можно привести их распределение, действующих на автомобиль при определенной скорости в зависимости от формы машины и наличия внешних элементов.

Простое сравнение результатов показывает, что даже минимальное улучшение, такое как изменение формы кузова и использование внешних элементов (спойлеров), приводит к тому, что аэродинамика автомобиля может поменяться самым кардинальным образом

Но относиться к этому надо достаточно осторожно, и вряд ли целесообразно экспериментировать самому

Аэродинамическое сопротивление автомобиля

В процессе проектирования и создания конструкторами очень тщательно прорабатывается аэродинамика автомобиля, поскольку она оказывает значительное влияние на технические показатели модели. При движении автомобиля большая часть мощности силовой установки уходит на преодоление сопротивления, создаваемого воздухом. И правильно созданная аэродинамика автомобиля позволяет уменьшить это сопротивление, а значит на борьбу с противодействием находящего воздушного потока потребуется затратить меньше мощности, и соответственно – топлива.

Измерение аэродинамики автомобиля проводится для изучения сил, создаваемых воздушным потоком и воздействующих на транспортное средство. И таких сил несколько – подъемные и боковые, а также лобовое сопротивление.

Короли аэродинамики в автомире.

Аэродинамика – это загадка мироздания, которую, конечно, уже давно разгадали ученые, конструкторы и инженеры автопромышленности. С самого начала появления автомобилей в нашем мире аэродинамика идет с ними бок о бок

Да, было время, когда автопроизводители забыли про важность аэродинамики. Особенно когда топливо стоило дешевле, чем алкоголь

Но сегодня, когда бензин и дизельное топливо не радуют своими ценниками на АЗС многих стран, физика твердого тела, движущегося в воздухе, имеет фундаментальное значение для ускорения и повышения эффективности автомобилей.

Напомним, что коэффициент аэродинамического сопротивления воздуха влияет на то, как автомобиль потребляет топливо на скорости. Это же касается и электрических автомобилей, для которых аэродинамика играет первостепенную роль, поскольку чем меньше сопротивление воздуха, тем меньше расходуется электричество для питания электромотора.

Благодаря развитию аэродинамики в автопромышленности многие автомобили стали обтекаемы по сравнению со своими предшественниками. Но в истории автомира было немало примеров, когда автомобильные компании пытались экспериментировать с необычными аэродинамическими формами. К сожалению, в большинстве случаев потребители не оценили то, что получалось, по причине того, что форма не соответствовала духу времени.

Мы собрали для вас самые интересные и необычные автомобили, имеющие странные аэродинамические кузова. Некоторые проекты неудачны, некоторые вполне удивляют даже сегодня.

Прижимная сила

При движении автомобиля поток воздуха под его днищем идет по прямой, а верхняя часть потока огибает кузов, то есть, проходит больший путь. Поэтому скорость верхнего потока выше, чем нижнего. А согласно законам физики, чем выше скорость воздуха, тем ниже давление. Следовательно, под днищем создается область повышенного давления, а сверху – пониженного. Таким образом создается подъемная сила. И хотя ее величина невелика, неприятность состоит в том, что она неравномерно распределяется по осям. Если переднюю ось подгружает поток, давящий на капот и лобовое стекло, то заднюю дополнительно разгружает зона разряжения, образующаяся за автомобилем. Поэтому с ростом скорости снижается устойчивость и автомобиль становится склонен к заносу.

Каких-либо специальных мер для борьбы с этим явлением конструкторам обычных серийных автомобилей выдумывать не приходится, так как то, что делается для улучшения обтекаемости, одновременно увеличивает прижимную силу. Например, оптимизация задней части уменьшает зону разряжения за автомобилем, а значит и снижает подъемную силу. Выравнивание днища не только уменьшает сопротивление движению воздуха, но и повышает скорость потока и, следовательно, снижает давление под автомобилем. А это, в свою очередь, приводит к уменьшению подъемной силы. Точно так же две задачи выполняет и задний спойлер. Он не только уменьшает вихреобразование, улучшая Сх, но и одновременно прижимает автомобиль к дороге за счет отталкивающегося от него потока воздуха. Иногда задний спойлер предназначают исключительно для увеличения прижимной силы. В этом случае он имеет большие размеры и наклон или делается выдвижным, вступая в работу только на высоких скоростях.

Для спортивных и гоночных моделей описанные меры будут, естественно, малоэффективны. Чтобы удержать их на дороге, нужно создать большую прижимную силу. Для этого применяются большой передний спойлер, обвесы порогов и антикрылья. А вот установленные на серийных автомобилях, эти элементы будут играть только лишь декоративную роль, теша самолюбие владельца. Никакой практической выгоды они не дадут, а наоборот, увеличат сопротивление движению. Многие автолюбители, кстати, путают спойлер с антикрылом, хотя различить их довольно просто. Спойлер всегда прижат к кузову, составляя с ним единое целое. Антикрыло же устанавливается на некотором расстоянии от кузова.

От каких факторов зависит показатель аэродинамики

Несмотря на то, что можно бесконечно перечислять факторы, от которых зависит аэродинамика автомобиля в движении, реально отметить список основных:

• геометрические параметры переда авто;

• геометрия боковых частей;

• геометрические данные задней части;

• геометрия дна;

• насколько шероховатой является поверхность.

Чтобы машина встречала минимальное воздушное сопротивление, необходимо позаботиться о плавной и обтекаемой форме. Когда воздух встречает какое-либо препятствие, он, в первую очередь, начинает сопротивляться, и только потом происходит его разделение. Первая часть обходит преграду сверху, вторая – с нижней части, третья и четвертая – по бокам. Теперь стоит представить, что воздушные потоки, окружающие машины, — это обыкновенные нити, на которых присутствуют пружины, равномерно распределенные по всей длине. Когда машина въезжает в пространство с такими полосами, начинает происходить следующее: для начала нужно, чтобы преграда расступилась. В зависимости от того, насколько большая площадь первого участка, тем больше пружин начинает сжиматься в одинаковый момент для дальнейшего движения. Когда данная ситуация уже произошла, происходит дальнейшее равномерное распределение по дну и кузову.

Далее пружины сжимаются еще больше, поэтому нити начинают двигаться по радиаторной решетке до тех пор, пока не дойдут до капота. Чаще всего там присутствует ступень внушительных размеров, поэтому пружина должна оперативно сжаться еще больше. Далее витки начинают напрягаться еще больше из-за ветрового стекла. Это происходит до того момента, пока кузов не будет сглаживаться, а у пружин не появится свободное пространство, чтобы принять исходное состояние. В том случае, если линия крыши будет перетекать в багажник, то пружина начнет разжиматься, а нить продолжит просто чертить контур. Но в том случае, когда пружина начнет терять опору, то, в первую очередь, произойдет ее разжимание, а колебания будут продолжаться до того времени, пока не будет полностью потрачена накопленная энергия. Подобные движения в хаотичном порядке оптимально показывают визуальный пример турбулентности. В этот момент происходит образование потоков завихряющегося «возмущенного воздуха», которые формируют промежуток с пониженным давлением. Самым простым примером турбулентной зоны является задняя часть прицепа для фуры. Можно почувствовать на уровне физиологии, как происходит затягивание воздуха, если двигаться мимо нее. Вспоминая азы школьной программы по физике, можно отметить, что движение предмета будет происходить в ту сторону, где окажется пониженный уровень давления. Именно поэтому эффект вызывает неприятные чувства. Однако большинство забывает о генерировании вакуума. Когда поток воздуха обрывается со стороны задней части кузова, появляется турбулентность, которая способна засосать обратно и преграждать путь вперед.

Также стоит обратить внимание, что современные иномарки имеют геометрию кузова, которая обладает некоторыми схожими чертами с формой крыла самолета. Дно современной машины имеет плоскую форму, поэтому потоки турбулентности появляются в небольшом количестве

Ситуация с верхней частью кузова обстоит совершенно по-другому. Предполагается, что возникающее давление воздуха будет меньше в сравнении с пространством под колесами. Поэтому ТС может немного приподниматься над дорожным покрытием. Чем больше просвет, тем сильнее оказывается эффект. Опора для самолетов происходит примерно одинаковым образом, так как появляется генерация подъемной силы из-за возникающей разницы в давлении. Разумеется, на машине полетать не получится, но все же о подобных вещах нужно помнить, особенно при передвижении на высокоскоростном режиме

Дно современной машины имеет плоскую форму, поэтому потоки турбулентности появляются в небольшом количестве. Ситуация с верхней частью кузова обстоит совершенно по-другому. Предполагается, что возникающее давление воздуха будет меньше в сравнении с пространством под колесами. Поэтому ТС может немного приподниматься над дорожным покрытием. Чем больше просвет, тем сильнее оказывается эффект. Опора для самолетов происходит примерно одинаковым образом, так как появляется генерация подъемной силы из-за возникающей разницы в давлении. Разумеется, на машине полетать не получится, но все же о подобных вещах нужно помнить, особенно при передвижении на высокоскоростном режиме.

Как меняют аэродинамику автомобиля?

Задача специалистов по аэродинамике состоит в уменьшении паразитных сил и моментов (Рх, Рz, Му, Мх и Мz). Добиться можно с помощью дополнительных аэродинамических элементов, что ведет к увеличению площади миделя и как следствие – к увеличению силы лобового сопротивления. Тупик? Нет, оказывается, грамотно сконструированные и тщательно продутые в аэродинамической трубе элементы позволяют уменьшить Сх! Что это за устройства? Обычно при слове обвес речь идет о бамперах, порогах, спойлерах и антикрыльях.

Антикрыло. Создано для борьбы с подъемной силой. Первостепенная задача – создать прижимную силу, чтобы колеса не теряли контакт с дорогой ни при каких условиях. Взгляните на болиды Ф1. Вот где антикрылья – усилия работы специалистов по аэродинамике! Но перебарщивать с размерами нельзя – резко растет аэродинамическое сопротивление, а значит – падает скорость, увеличивается расход топлива. Практически на всех спортивных автомобилях рабочая часть крыла выполнена регулируемой для возможности изменения угла атаки и возможности настройки.

Основы аэродинамики автомобиля. Что влияет на аэродинамику авто?

Спойлер (от spoil — портить). Аэродинамический элемент с одной рабочей поверхностью для изменения направления движения воздушного потока. Основная задача «правильного» спойлера – организация безотрывного и «плавного» обтекания воздушным потоком всей поверхности автомобиля, что повышает устойчивости при движении с высокими скоростями. Спойлер может бороться с подъемной силой, отсюда его сложные формы. Но эта деталь всегда примыкает к кузову автомобиля. По большому счету, бамперы и пороги это тоже большие спойлеры.

Спойлер и антикрыло – основные, но не единственные элементы, улучшающие аэродинамику. Если заглянуть под днище современного авто, то увидим большое количество специальных щитков. Их задача – уменьшить сопротивление, исключить завихрения и направление потока в нужном направлении. Иногда проработка днища дает потрясающие результаты.

Диффузор. Дальше всех пошли спортсмены – они решили присосать автомобиль к трассе! Появились болиды с днищем, имитирующим «трубку Вентури» – создающие резкий рост скорости воздушного потока под машиной. В результате создавалась мощная прижимная сила. Плодами этого открытия норовит воспользоваться каждый автопроизводитель: диффузоры, обеспечивающие ускорение потока, появляются в задней части гражданских машин.

Проблема, что для максимально эффективной реализации т.н. «граунд-эффекта» нужны по возможности плоское днище и минимальный дорожный просвет. Если строители спортивных машин могут это позволить, то, к примеру, на Evolution диффузор служит скорее украшением, чем полноценным аэродинамическим элементом.

Парктроник – главный помощник автовладельца. Устройство и монтаж

Лобовое сопротивление и коэффициент Сх

По большей части все работы с кузовом авто направлены на преодоление лобового сопротивления, поскольку именно эта сила самая значительная.

Движение потоков воздуха

За основу при расчетах берется сила сопротивления воздуха. Для вычисления результата используются такие данные как плотность воздуха, площадь поперечной проекции авто, коэффициент аэродинамического сопротивления (Сх) — это важнейший показатель в аэродинамике автомобиля. При этом на силу сопротивления в значительной мере влияет также скорость движения. Так, увеличение скорости вдвое будет сопровождаться повышением сопротивлением в 4 раза. Скорость один из мощных факторов увеличения расхода.

Например, для хорошо обтекаемого авто с площадью проекции 2 м2 и коэффициентом 0,3 при движении на скорости 60 км/ч для преодоления сопротивления воздуха необходимо 2,4 л.с., а при скорости 120 км/ч уже 19,1 л.с. Разница расхода топлива при таких условиях достигает 30% на 100 км.

Рассмотрим все по-простому. У воздуха есть своя плотность, причем немалая. При движении автомобилю приходится проходить через имеющиеся воздушные массы, при этом создается поток, который обтекает кузов. И чем легче авто будет «резать» воздушную массу, тем меньше он затратит на это энергии.

Но не все так просто. Во время движения перед авто создается область увеличенного давления (машина сжимает воздушную массу), то есть спереди образуется такой себе невидимый барьер, осложняющий «разрезание» воздушной массы.

Также после обтекания кузова происходит отрыв воздушного потока от поверхности, что становиться причиной появления завихрений и разрежения за авто. В сочетании с повышенным давлением возникающее разрежение еще больше увеличивает сопротивление.

Поскольку повлиять на плотность воздуха невозможно, то конструкторам остается только вносить коррективы в две другие расчетные составляющие – площадь авто и коэффициент аэродинамического сопротивления.

Но уменьшить проекцию авто не представляется особо возможным без ущерба для полезных пространств кузова (просто невозможно сделать авто меньше, чем он есть), поэтому остается только изменение коэффициента Сх.

Этот коэффициент устанавливается экспериментальным путем (в аэродинамической трубе) и характеризует он соотношение лобового сопротивления к скоростному напору и площади поперечного сечения кузова. Величина его безразмерная.

Аэродинамическая труба

Наименьший коэффициент аэродинамического сопротивления имеет каплевидное тело. При движении в воздушной массе такое тело плавно перед собой разводит поток, не создавая области повышенного давления, а имеющийся «хвост» позволяет за собой сомкнуть поток без обрывов и завихрений, то есть разрежение тоже отсутствует. Получается, что воздух просто обтекает тело, создавая минимальное сопротивление. Для такого тела коэффициент Сх составляет всего 0,05.

Конструкторам, работая с аэродинамикой автомобиля добиться, таких показателей пока не удается. И все потому, что при движении сопротивление создается несколькими факторами:

  • Формой кузова;
  • Трением потока о поверхности при обтекании;
  • Попаданием потока в подкапотное пространство и салон.

Поэтому для современных авто коэффициент аэродинамического сопротивления считается отличным, если его значение ниже 0,3. К примеру, у Peugeot 308 коэффициент составляет 0,29, у Audi A2 он равен 0,25, а у Toyota Prius – 0,26. Но стоит отметить, что это расчетные показатели в идеальных условиях. На практике же во время движения на авто воздействуют множество разнообразных факторов, которые негативным образом сказываются на сопротивлении кузова.

Примечательно, что на коэффициент оказывает наибольшее влияние не передок авто, а его задняя часть. И виной этому становится создание разрежения и завихрений в результате отрыва потока от кузова. Поэтому конструкторы по большей части занимаются приданием необходимой формы именно задней части.

Коэффициент сопротивления Volkswagen XL1 составляет всего 0,19

Снизить коэффициент Сх позволяет также уменьшение количества выступающих частей, причем везде на авто (бока, крыша, днище, передок), а тем элементам, которые не удается убрать с поверхности придается максимально возможная обтекаемая форма.

На какой высоте устанавливать антикрыло

Малоопытные водители часто удивляются высокому расположению элементов, считая это решение глупым и бессмысленным. На самом деле при движении на треке подобный тип установки является оправданным.

Крыло в этом случае располагается в зоне «чистого воздуха», то есть на пути следования потока над крышей авто.

Во время движения в задней части машины давление воздуха разрежено и прижимной силы практически нет.

Антикрыло ставится таким образом, чтобы через него проходил «чистый воздух» и выполнял свою функцию. Если поставить девайс ниже, то от него попросту не будет толка.

Но, исходя из вышесказанного, возникает вопрос по поводу оптимальной высоты для установки антикрыла.

Здесь есть несколько вариантов (в зависимости от типа кузова).

Седан.

Практически на всех авто такого типа угол «скоса» заднего стекла очень большой. Следовательно, разреженность воздуха над багажником проявляется намного больше.

Ставить спойлер на низких «ножках» в таком авто бессмысленно. Лучший выход – монтаж аэродетали на максимально допустимую высоту.

Лифт-, фастбэк или купе.

У таких авто заднее стекло довольно «покатое», угол небольшой. Следовательно, разрежение воздуха над задней частью машины не так заметно. В этом случае антикрылья должны ставиться на среднюю высоту.

Универсал, хэтчбек.

Все авто такого класса имеют одну общую особенность – у них нет багажников в том виде, в каком мы привыкли их видеть.

В этом случае спойлер должен устанавливаться как раз на краю крыши, чтобы через аэродеталь проходили потоки «чистого воздуха».

Компоновка – среднемоторная, привод – задний

Особенность таких автомобилей – центр тяжести, который находится где-то в центральной части автомобиля.

Передок машины намного легче, что может привести к неконтролируемому заносу задней части авто или перевороту последнего.

Но столь негативные явления можно сбалансировать, если установить подходящие аэродинамические детали на передке машины (о них мы уже упоминали выше).

ПОПУЛЯРНОЕ У ЧИТАТЕЛЕЙ: Как удержать авто на мокрой дороге? Советы профессионалов

Не стоит забывать о задней части автомобиля, где диффузоры, спойлеры и антикрылья также могут пригодиться. С их помощью создается прижимная сила на заднюю ось.

Снова-таки, рассмотрим два основных типа авто.

Что же такое аэродинамическая труба?

 

Это простое конструкция, которое состоит из закрытого туннеля (огромной емкости) чрез какой подаются потоки воздуха с помощью мощных вентиляторов. В аэродинамическую трубу помещают объект, на какой и начинают подавать потоки воздуха. Также в современных аэродинамических трубах специалисты имеют возможность подавать направленные потоки воздуха на определенные элементы кузова автомобиля или любого транспортного средства.

 

Тестирование в аэродинамических трубах приобрело массовую популярность во пора Великой Отечественной войны в 40-е годы. Во всем мире военные ведомства вели изыскание аэродинамики военной техники и боеприпасов. После войны военные аэродинамические исследования свернулись

Однако внимание на аэродинамику обратили инженеры, проектирующие спортивные гоночные автомобили. Затем эту моду подхватили проектировщики и легковых автомобилей. 

 

Изобретение аэродинамической трубы позволило специалистам тестировать транспортные средства, которые находятся в неподвижном состоянии. Дальше подаются потоки воздуха и создается тот же эффект что наблюдается при движении машины. Даже при испытаниях самолетов объект остается не подвижным. Регулируется лишь скорость ветра, для того чтоб сымитировать определенную скорость транспортного средства.

Благодаря аэродинамики, будто спортивные этак и простые автомобили стали приобретать вместо квадратных форм более плавные линии и закругленные элементы кузова.

Порой для исследования может быть не нужен и весь автомашина. Нередко для изучения аэродинамики кузова определенной модели, может использоваться обычный макет в натуральную величину. В итоге специалисты определяют степень сопротивления ветра.

По тому, будто движется ветр внутри трубы, определяется коэффициент лобового сопротивления ветра.

 

Современные аэродинамические трубы, по сути, представляют собой гигантский фен для вашего автомобиля. Этак, одна из известных аэродинамических труб расположена в Северной Каролине США, где проводится исследования ассоциации гонок NASCAR. Благодаря этой трубе инженеры моделируют автомобили способные передвигаться со скоростью 290 км/ч.

В это сооружение было вложено возле 40 млн. долларов. Труба основы свою работу в 2008 году. Главные инвесторы — это ассоциация гонок NASCAR и обладатель гонок Формула-1 Джин Хаас. 

Вот видео традиционного испытания в этой трубе:

С момента появления первой в истории аэротрубы инженеры поняли, будто это изобретение важно для всей автопромышленности

В итоге на нее обратили внимание автомобильные проектировщики, которые стали развивать технологии исследования потоков воздуха. Однако технологии не стоят на месте

В наши дни многие исследования и расчеты проходят в компьютере. Самое удивительное, что даже аэродинамические тесты проводятся в специальных компьютерных программах.

 

В качестве испытуемого используется 3D виртуальная модель машины. Дальше на компьютере воспроизводятся различные обстоятельства для тестирования аэродинамики. Тот же подход начал развиваться и для проведения краш-тестов. Этак недавно было объявлена, что готовится новая технология позволяющая коротать виртуальные краш-тесты, которые не лишь могут сэкономить денежки, ни учесть масса параметров при испытании.

Также будто реальные краш-тесты стройка аэродинамической трубы и испытания в ней весьма дорогое наслаждение. На компьютере себестоимость испытаний может составить итого несколько долларов. 

Истина бабушки, дедушки и приверженцы старых технологий по-прежнему будут сообщать, что реальный мир лучше, чем компьютеры. Однако 21 столетие есть 21 столетие. Потому неизбежно, что в ближайшем будущем многие реальные испытания будут целиком проводиться на компьютере. 

Хотя стоит отметить, что мы и не против компьютерных технологий, однако надеемся, что реальные тесты в аэротрубе и обычные краш-тесты по-прежнему останутся в автопромышленности. 

Информационное издание: Новости гаи, дтп, штрафы пдд, ГИБДД, Испытание ПДД онлайн. Техосмотр

Сравнение с аэродинамикой самолета

Автомобильная аэродинамика отличается от аэродинамики самолетов по нескольким причинам. Во-первых, характерная форма дорожного транспортного средства гораздо менее обтекаемая по сравнению с самолетом. Во-вторых, машина движется очень близко к земле, а не в открытом воздухе. В-третьих, рабочие скорости ниже (и аэродинамические тянуть варьируется в зависимости от квадрат скорости). В-четвертых, у наземной техники меньше степени свободы чем самолет, и на его движение меньше влияют аэродинамические силы. В-пятых, у легковых и коммерческих наземных транспортных средств есть очень специфические конструктивные ограничения, такие как их предполагаемое назначение, высокие стандарты безопасности (требующие, например, большего «мертвого» конструктивного пространства для работы в качестве зон деформации) и определенные правила.

Улучшение аэродинамики автомобиля

Машина движется в воздушной среде, преодолевая ее сопротивление. Оно во многом определяется формой автомобиля, наличием и конструкцией внешних устройств. Для первых представителей авто, например «жестянка Лиззи», это не имело никакого значения, скорости движения были невелики, и время думать о том, что надо улучшать аэродинамику автомобиля, еще не пришло.

Однако по мере взросления автопрома росли скорости и мощности моторов, так что для дальнейшего развития и совершенствования автомобиля, вопросы, затрагивающие улучшение его аэродинамики, становились все более и более актуальными. Главные цели улучшения аэродинамических показателей — увеличение скоростей и экономия топлива. В таблице показано как меняется сопротивление воздуха в зависимости от скорости.

Первыми с этим столкнулись спортивные машины, именно там стали появляться обтекаемые формы, позволившие снизить сопротивление внешней среды, благодаря чему повысились скорости движения. Надо сразу отметить, что в тот момент именно скоростные характеристики стояли на первом месте, об экономичности речи еще не шло.

Но со временем именно топливная экономичность, вопросы безопасности и управляемости стали решающими. За счет оптимальных форм кузова, а также обтекаемости внешних элементов отделки и дизайна (фар, ручек, решеток и т.д.) удалось поднять скорость движения и повысить топливную эффективность автомобиля.

Как пример – в таблице приведены некоторые данные о влиянии внешних элементов на расход топлива.

Так что со временем улучшение эксплуатационных характеристик автомобиля, стало просто невозможно без учета влияния на них его аэродинамики. И достигается это кропотливым трудом многочисленных специалистов на специальных стендах.

Аэродинамика автомобиля имеет отношение практически ко всему спектру вопросов существования современного ТС. Дело не только в наличии внешних атрибутов, таких как спойлеры, колесные диски или зеркала специальной формы. Во многих случаях аэродинамика играет едва ли не решающую роль в управляемости и безопасности движения. И собираясь улучшать аэродинамику автомобиля самостоятельно, стоит понимать, что этим занимался производитель еще на этапе производства.

Динамическое поведение

Аэродинамика также влияет на поведение автомобиля в движении, как на прямых, так и на поворотах. В целом, хорошо выполненная конструкция обеспечивает превосходную стабильность, так как возникает меньше нежелательной турбулентности и дисбаланса.

Кроме того, если аэродинамика позволяет создавать нагрузку или прижимную силу, сцепление на поворотах будет выше, поскольку оно будет дополнять механическое сцепление, обеспечиваемое в основном шинами, подвеской и шасси.

Спойлеры являются хорошим ресурсом для обеспечения устойчивости и сцепления на поворотах, хотя в большинстве случаев их использование сводится к эстетическому ресурсу, поскольку их эффективность во многом зависит от скорости, а также создает сопротивление, увеличивая расход.

О теории и практике

Одним из основных технико-экономических показателей колесного транспорта является его производительность. Она определяется количеством перевезенного груза в тоннах или выполненной транспортной работой в тонно-километрах за единицу времени. Таким образом, повышение производительности обеспечивается как увеличением количества (объема) перевезенного груза, так и ростом скорости движения транспортного средства.

Влиянием аэродинамики на скоростные свойства и производительность колесного транспортного средства всерьез заинтересовались в НЦ ПММ НАН Беларуси. В качестве подопытного был выбран автопоезд МАЗ-5432.

Практика подтвердила теорию. Эффективным способом уменьшения аэродинамического сопротивления транспортного средства является оптимизация формы кабины и кузова, а также применение внешних аэродинамических устройств. На графике приведены характеристики разгона автопоезда МАЗ-5432 без комплекта внешней аэродинамической обвески и с ним на прямой передаче с начальной скоростью 60 км/ч. Видно, что снижение сопротивления движению улучшило динамику разгона автопоезда с аэродинамическими устройствами в диапазоне скоростей 60…100 км/ч на 12%, при этом максимальная скорость автопоезда возросла от 105 до 112 км/ч, т. е. на 6,5%.

Таким образом, наряду с экономией топлива снижение аэродинамического сопротивления позволяет повысить скоростные и динамические качества автопоезда, а следовательно, их технико-экономические показатели. Как известно, производительность транспортного средства определяется его грузоподъемностью и средней технической скоростью, которая в свою очередь зависит от максимальной скорости. Снижение аэродинамического сопротивления позволяет существенно повысить максимальную скорость автомобиля, а значит, и его производительность.

Рассмотрим возможность повышения производительности магистрального автопоезда с обтекаемой головной частью и уменьшенным зазором между кабиной и кузовом.

Годовая производительность автопоезда в т·км рассчитывается по следующей формуле:

(см. таблицу «Годовая производительность автопоездов»).

Годовая производительность автопоездов
Параметры, используемые в расчетах Параметры для седельного автопоезда
с низкой кабиной с кабиной увеличенной высоты
Dх – число календарных дней в году 365 365
αв – коэффициент использования парка 0,72 0,72
Тн – время в наряде, ч 12,5 12,5
Gгр – грузоподъемный, т 20 21,1
γг – коэффициент использования грузоподъемности 0,85 0,85
βп – коэффициент использования пробега 0,75 0,75
Кг – средняя длина грузовой ездки для междугородних перевозок, км 150 150
Vт – средняя или техническая скорость автопоезда, км/ч 42 44,5
Тпр – время простоя под погрузкой и выгрузкой на одну ездку, ч 0,89 0,89
Vэ – эксплуатационная скорость автопоезда, км/ч 35,38 37,15

Величина эксплуатационной скорости определяется по формуле:

При проведении расчетов учитывалось, что за счет снижения коэффициента Сх обтекаемого автопоезда на 70% его техническая скорость возросла с 42 до 44,5 км/ч, а удлинение кузова на 0,7 м увеличило грузоподъемность с 20 до 21,1 т. С учетом приведенных данных рассчитываем годовую производительность для автопоездов с низкой кабиной Wгс и обтекаемой кабиной увеличенной высоты Wго:

Таким образом, улучшение обтекаемости головной части автопоезда за счет применения кабины увеличенной высоты и уменьшения зазора между ней и кузовом позволит повысить производительность седельного автопоезда на 10%.

Аналогичные исследования позволили оценить степень повышения скоростных свойств и производительности автопоезда при установке на них внешних аэродинамических устройств. Наличие комплекта аэродинамических элементов позволяет снизить коэффициент Сх автопоезда на 39%, что обеспечивает повышение его скоростных свойств на 8%, а производительности – на 5%. Все эти цифры очень легко перевести в рубли. Так что, как говорится, есть повод для размышлений…

В заключение хотелось бы сказать, что при разработке и эксплуатации автомобиля будь то легкого пикапа или магистрального тягача, пренебрегать аэродинамическими свойствами было бы по крайней мере ошибочно. Недаром зарубежные автопроизводители ежегодно выделяют на аэродинамические исследования огромные средства. Там прекрасно понимают, что в итоге эти затраты окупятся с лихвой. Так не пора ли аэродинамической трубе на автополигоне ФГУП НИЦИАМТ заработать и опровергнуть постулат «Деньги на ветер»? Ведь этот самый ветер может принести отечественным автостроителям и эксплуатационникам немалые деньги.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *