Как подключить вольтамперметр к зарядному устройству

Содержание:

Какие ещё имеются варианты ЗУ для АКБ

Рассмотрим еще несколько вариантов автономных зарядных устройств.

Использование зарядки от ноутбука для АКБ

Один из самых простых и быстрых способов оживить севший аккумулятор. Для реализации схемы ревитализации аккумулятора с помощью зарядки ноутбука вам потребуются:

  1. Зарядное устройство для любого ноутбука. Параметры зарядных устройств — 19В, сила тока — около 5А.
  2. Галогенная лампа мощностью 90 Вт.
  3. Кабельное соединение с клеммами.

Перейдем к реализации схемы. Лампа служит для ограничения силы тока до оптимального значения. Вместо лампочки можно использовать резистор.

Зарядное устройство для ноутбука также можно использовать для «оживления» автомобильного аккумулятора

Собрать такую ​​схему несложно. Если зарядку от ноутбука не планируется использовать по прямому назначению, вилку можно отрезать, а затем к проводам подсоединить зажимы. Сначала с помощью мультиметра следует определить полярность. Фонарь включен в цепь, идущую к положительному полюсу аккумулятора. Отрицательная клемма аккумулятора подключается напрямую. Только после подключения устройства к аккумулятору можно подавать напряжение на блок питания.

ЗУ своими руками из микроволновой печи или аналогичных приборов

С помощью блока трансформатора, который находится внутри микроволновки, можно сделать зарядное устройство для аккумулятора.

Ниже представлена ​​подробная инструкция по изготовлению самодельного зарядного устройства из блока трансформатора СВЧ.

  1. необходимо снять блок трансформатора с микроволновки.
  2. Снимите вторичную обмотку, затем замените ее изолированным проводом сечением более 2 мм2 .
  3. Определите необходимое количество оборотов изолированного провода. Подобрать нужное значение можно экспериментальным путем. Для этого нужно намотать 10 витков, а затем измерить выходное напряжение. Например, если его значение равно 2 В, потребуется около 70 витков, чтобы достичь 14,5 В. Выходное напряжение будет зависеть от размера используемого провода. Обмотка снята с трансформаторного блока СВЧ
  4. Для реализации схемы понадобится диодный мост и мощный конденсатор.
  5. При желании в схему можно включить амперметр, который будет показывать ток.

Схема подключения трансформатора, диодного моста и конденсаторного блока к автомобильному аккумулятору

Монтаж устройства можно производить на любую базу

При этом важно, чтобы все элементы конструкции были надежно защищены. При необходимости схему можно дополнить переключателем и вольтметром

Бестрансформаторное зарядное устройство

Если поиск трансформатора будет остановлен, можно использовать более простую схему без понижающих устройств. Ниже представлена ​​схема, позволяющая реализовать зарядное устройство аккумулятора без использования трансформаторов напряжения.

Схема подключения зарядного устройства без трансформатора напряжения

В роли трансформаторов выступают конденсаторы, рассчитанные на напряжение 250 В. В схему следует включить не менее 4 конденсаторов, поставив их параллельно. Параллельно конденсаторам в схему включены резистор и светодиод. Роль резистора — гасить остаточное напряжение после отключения устройства от сети.

В схему также входит диодный мост, рассчитанный на работу с токами до 6А. Мост подключается к схеме после подключения к его клеммам конденсаторов и проводов, идущих к аккумулятору на зарядку.

Правила по эксплуатации

Перед началом заряда аккумуляторной батареи убедитесь, что ее емкость не меньше указанной в технической таблице характеристик пуско-зарядного устройства. Необходимо подключить минусовой провод ПЗУ с черной клеммой (крокодил) к минусовой клемме аккумулятора, плюсовой кабель с красной клеммой к плюсовой клемме. Учтите, что при подключении не должно быть искр, иначе скорее всего кабели перепутаны. Заряжать аккумулятор можно в любое время года, учитывая его мощность и степень разрежения.

Для бесшумной зарядки используется режим, при котором не превышается коэффициент 1/10 мощностной характеристики аккумулятора. Включаем ПЗУ в сеть (подаем питание). Выберите режим зарядки. Процесс зарядки начался. Нужно следить и учитывать показания амперметра на шкале, смотреть на надписи на дисплее или яркость светодиодной индикации. Для продления срока службы и работоспособности аккумулятора рекомендуется заряжать его в медленном режиме, не допуская перегрева.

Стоит отметить, что чем ниже напряжение питания ПЗУ, тем дольше будет происходить процесс зарядки аккумулятора.

Как проверить заряд аккумулятора

Рекомендуется проверять аккумулятор не реже двух раз в год. Первый раз весной, второй раз осенью. Если соблюдать рекомендации по обслуживанию, то можно не думать о том, как зарядить аккумулятор в домашних условиях. Если машина долго стояла или села батарея, потребуется внеплановое техобслуживание

Для этого обратите внимание на индикатор, он установлен на многих моделях. Степень заряда можно определить по его шагу

Если он красный, его нужно зарядить.

Если он зеленый, то все в порядке и вам не придется думать, как правильно зарядить автомобильный аккумулятор зарядным устройством. Проверить напряжение можно следующим образом:

  1. Установите мультиметр на 20В.
  2. Далее нужно измерить напряжение в покое и под нагрузкой. Во втором случае нужно завести машину.
  3. Номинальное напряжение 12 В. Под нагрузкой показатель не должен опускаться ниже 9 В.

Сколько времени необходимо заряжать аккумулятор

Нет строго определенного времени, за какое время аккумулятор нужно заряжать.

Время зарядки варьируется и зависит от:

  • емкость аккумулятора и степень его разрядки;
  • возраст и степень сульфатации пластин.

Помимо тока, который регулируется при зарядке, важно установить напряжение:

  • При выходном напряжении зарядного устройства — 14,4 В — в течение дня аккумулятор будет заряжен на 80%.
  • При выходном напряжении зарядного устройства — 15,0 В — в течение дня аккумулятор будет заряжен на 90%.
  • При выходном напряжении зарядного устройства — 16,0 В — в течение дня аккумулятор будет заряжен на 100%. Ток заряда тоже важен. На современных устройствах он подстраивается автоматически.

Можно ли заряжать аккумулятор от другой машины

Заряд аккумулятора может неожиданно закончиться, и в этом случае его может потребоваться зарядить непосредственно на машине. Процесс вреден для аккумулятора и довольно опасен. Иногда просто нет других вариантов.

Суть в том, что другой проводник соединяет севший аккумулятор с заряженным с помощью специальных кабелей

Такая подзарядка делается быстро, важно следить за состоянием обеих машин. В большинстве случаев достаточно нескольких минут

После этого нужно ехать в автосервис и полностью восстанавливать аккумулятор. Этот вариант можно считать экстренным, когда вам нужно только подзарядить аккумулятор на короткое время, чтобы иметь возможность использовать его в дороге.

Как заряжать АКБ на морозе

Зимой каждый автомобилист должен заботиться об аккумуляторе. Перед началом сезона обязательно нужно проверить износ генератора, самого аккумулятора, а также уточнить уровень заряда качественными замерами. Зимой обязательно нужно контролировать процесс разгрузки, иначе каждый водитель может попасть в неприятную ситуацию, когда утром просто не получится завести свой автомобиль. Идеальным вариантом будут регулярные ночные проверки.

По результатам исследований можно заряжать прямо в машине, проехав около получаса, а также снимать аккумулятор и восстанавливать его прямо с помощью хорошего зарядного устройства. Водитель должен полностью контролировать свой автомобиль, в том числе учитывая индивидуальные особенности аккумулятора, а также обеспечивать стабильный уровень заряда.

Принцип работы

Первый прибор в начале XIX века изобрел Швейгер, но он тогда назывался гальванометром. Рисунок простейшего амперметра выглядит так. На оси кронштейна расположен якорь из стали со стрелкой. Эта конструкция расположена параллельно постоянному магниту, который воздействует на якорь и придает ему магнитные свойства.

Вдоль магнита и стрелки проходят силовые линии, что соответствует нулевому положению на шкале. Как только начнет проходить электрический ток по шине, то произойдет образование магнитного потока. Его силовые линии будут расположены перпендикулярно линиям постоянного магнита.

Самодельная зарядка для АКБ

Существует много схем автомобильных зарядных устройств. Для реализации большинства подойдут детали, трансформаторы, выпаянные из старой радиоаппаратуры, блоки питания компьютеров.

Зарядка с плавной регулировкой тока

Схема немного сложнее, но все детали доступны. Прибором заряжают 12-вольтовые АКБ, емкость которых — до 120 А∙ч. Вид зарядного тока — импульсный, используется тиристор. Регулятором плавно изменяют величину зарядного тока, но одновременно предусмотрен ступенчатый переключатель. Контролируют режим при помощи стрелочного амперметра на 30 А.

Самодельный резистор R1 нужен для ограничения тока. Для его изготовления подойдет медный или нихромовый провод диаметром 0,8 мм. Нужна будет небольшая индикаторная лампа Е1, рассчитанная на 24-36 В.

Выходное напряжение на понижающем трансформаторе 16-18 В, ток — 15 А. Ищут прибор с такими характеристиками или делают своими руками из подходящего устройства мощностью 300 Вт. Оставляют только первичную обмотку, вторичную из 42 витков наматывают проводом с изоляцией, сечение 6 мм².

Для схемы нужен тиристор КУ202 с буквенным индексом В-Н. Для охлаждения используют радиатор, площадь рассеивания которого от 200 см². А также понадобится диод VD1 любого типа с характеристиками обратного напряжения 20 В, тока — 200 мА.

Настраивают устройство калибровкой амперметра, подключив в качестве контрольного заведомо исправный. Для нагрузки вместо АКБ подключают автомобильные лампочки, общая мощность которых составляет 250 Вт.

Зарядка из компьютерного блока питания

Из старого блока питания ПК с контроллером TL 494 получается зарядное устройство с хорошими характеристиками. У него регулируемое напряжение и возможность подстройки тока до 10 А.

В демонтированный из компьютера БП вносят согласно схеме некоторые изменения:

  1. На шинах питания откусывают все провода, оставив только желтые и черные.
  2. Проводники одного цвета соединяют между собой. Жгут из черных — это минусовый контакт ЗУ, из желтых — плюсовой.
  3. Печатные дорожки к ножкам 1, 14, 15, 16 микросхемы перерезают.
  4. Для регулировки напряжения устанавливают переменный резистор 10 кОм, зарядного тока — 4,4 кОм.

Собирают способом навесного монтажа, используют провода с минимальным сечением 4 мм². Устанавливают вольтметр, амперметр, подключают провода с зажимами.

Расположенный внизу схемы резистор на 0,1 Ом мощностью 10 Вт и больше делают из меди или нихрома: подбирают нужную длину провода, замеряя сопротивление. Подойдут также резисторы С5-16МВ или 2 подключенных параллельно 5WR2J. Остальные — любого типа.

Методы подключения автомобильного амперметра

Всего есть три основных варианта подключения амперметра к автомобилю. У каждого из них есть свои технические особенности, которые очень желательно знать заранее. Есть и менее популярные методы подключения амперметра, но они либо слишком сложные, либо результат не стоит затраченных усилий. Выбор оптимального способа подключения зависит от используемого прибора и поставленных задач.

Генератор-АКБ

Для реализации данного метода подойдет самый простой односторонний амперметр с плюсовой полярностью. При использовании такой схемы подсоединения мы получаем возможность контролировать ток, который поступает от генератора в АКБ и для питания приборов бортового компьютера. Однако вычислить показатели разряда (т.е. при неработающем моторе) невозможно.

Подключение происходит по следующей схеме:

  1. Провод, подключенный на плюсовую клемму аккумулятора, отключается.
  2. Получится разрыв сети, в который подключается шунт с учетом полярности (об этом обязательно должно быть сказано в инструкции к прибору).
  3. К выходам шунта подсоединяются измерительные провода амперметра (как правило, они имеют небольшое сечение).
  4. Для питания самого прибора к нему подводится бортовое напряжение 12В.
  5. При необходимости такой разрыв можно создать около самого аккумулятора.

АКБ-потребители

Данная методика подключения значительно сложнее предыдущей, однако более функциональна, и позволяет получить больше сведений о текущей обстановке. Для реализации данного способа желательно иметь амперметр, работающий в обоих направлениях. В таком случае устройство позволит анализировать ток, который потребляют установленные в автомобили электроприборы. Шунт для такого способа также должен быть подходящим, то есть, предназначенным для установки к плюсовой клемме. Схема подключения выглядит следующим образом:

От плюсовой клеммы аккумулятора отсоединяются все провода, за исключением кабеля, который подключен к стартеру.
В этот разрыв подсоединяется шунт

Важно учитывать полярность и соблюдать маркировку (об этом будет написано в инструкции к прибору).
К шунту подсоединяются провода от амперметра.
Амперметр подключается к бортовой сети.
Провода изолируются во избежание короткого замыкания.. Необходимость использования двухстороннего амперметра при такой схеме подключения обусловлена тем, что односторонний прибор будет показывать только ток, используемый электроприборами

Двухсторонние модели показывают более полную информацию о сети. Поэтому описанный метод подключения является наиболее популярным

Необходимость использования двухстороннего амперметра при такой схеме подключения обусловлена тем, что односторонний прибор будет показывать только ток, используемый электроприборами. Двухсторонние модели показывают более полную информацию о сети. Поэтому описанный метод подключения является наиболее популярным.

Подключение амперметра на минусовую клемму

Такая методика подключения актуальна только в том случае, если имеющийся в наличии амперметр предназначен для подключения к минусовой клемме. Во всех остальных ситуациях рационально использовать один из перечисленных выше способов. Это связано с тем, что подключение к минусовой клемме скрывает в себе ряд неудобств:

  • При запуске двигателя (это необходимо для измерений) есть вероятность выхода из строя амперметра.
  • В большинстве случаев минус к амперметру подключается несколькими проводами.
  • Для работы амперметра к нему необходимо подключить отдельное питание.
  • Если вы точно уверены, что это единственный возможный метод, действуйте по следующему алгоритму:
  • Отключается питание от минусовой клеммы аккумулятора.
  • В разрыв устанавливается шунт. Параллельно нему подключается специальный размыкатель (идет в комплекте с амперметром).
  • К слаботочным клеммам подключаются провода от амперметра.
  • С помощью DC-DC интерфейса с гальванической развязкой подключается питание амперметра.
  • Перед запуском двигателя изолируются созданная сеть.

Если в комплекте поставки размыкателя не оказалось, его можно заменить выключателем массы с отдельной кнопкой. Преобразователь не всегда входит в комплект, поэтому его точно придется докупать. Настоятельно не рекомендуем пользоваться дешевыми китайскими аналогами, в таком случае высока вероятность выхода из строя прибора. Необходимо иметь преобразователь, который точно выдержит имеющееся напряжение.

Виды амперметров

По своему действию все амперметры разделяются на электромагнитные, магнитоэлектрические, тепловые, электродинамические, детекторные, индукционные, фото- и термоэлектрические. Все они предназначены для измерения силы постоянного или переменного тока. Среди них, наиболее чувствительными и точными, являются электродинамические и магнитоэлектрические амперметры.

Во время работы магнитоэлектрического амперметра, создается крутящий момент, через взаимодействие между полем в постоянном магните и током, проходящим через обмотку рамки. С этой рамкой и соединяется стрелка, движущаяся по шкале. Поворот стрелки осуществляется на величину угла, пропорциональную силе тока.

Расчет и изготовление шунта

Амперметр M367 имеет максимальный предел измерения тока 150 А. Очевидно, что при определении таких величин силы тока задействовано внешнее шунтирующее сопротивление. Освобожденный от влияния шунтирующего элемента прибор приобретает свойства миллиамперметра с максимальным показанием силы тока 30 мА.

Основные понятия и формулы

Значение суммарной величины тока I распределяется между шунтирующим резистором (Rш, Iш) и изм. прибором (Rа, Iа) и находится в обратно пропорциональной зависимости сопротивлению этих участков.

Электросопротивление ответвления измерительной цепи: Rш=RаIа / (I-Iа).

Для умножения масштаба измерения в n раз следует принять значение: Rш=(n-1) / Rа, при этом показатель n=I/Iа — коэффициент шунтирования.

Расчет шунтирующего звена

Для расчета шунта микроамперметра можно воспользоваться данными об измерительной головке прибора: сопротивление рамки (Rрам), величина тока, которая соответствует максимальному отклонению индикаторной стрелки (Iинд) и наибольшее значение прогнозируемой шкалы измерения тока (Imax). Максимальным измеряемым током примем значение 30 мА. Значение Iинд определяется экспериментальным путем. Для этого последовательно включается в электрическую цепь переменный резистор R, шкала индикатор и измерительный тестер.

Перемещая ходунок резистора R, следует добиться максимального показания стрелки на шкале индикатора и зафиксировать показания Iинд на тестере. Вследствие опыта известны величины Iинд = 0.0004 А и Rрам=1кОм (также измеряется тестером), этого достаточно для дальнейшего расчета сопротивления шунта микроамперметра (индикатора) по формуле:

Rш=Rрам * Iинд / Imax; получаем Rш=13,3 Ом.

Длина проводника

Выбрав материал для изготовления и зная величину его удельного сопротивления, необходимо рассчитать длину токовой части шунта.

Согласно соотношению: Rш=p*J/S,

где: p-удельное сопротивление, J-длина, S- площадь поперечного сечения проводника, подбираются геометрические параметры медного провода (p=0.0175 Ом*мм2 /м).

Величину площади можно рассчитать из формулы, вооружившись предполагаемым значением диаметра:

S=3.14*d2/4.

Тогда искомая величина будет равна:

J=R*S/p.

При диаметре проводника d= 0.1 мм, подставив значения получается длина:

J=0.45 м.

Расчет шунта для амперметра постоянного тока определил такие выходные данные:

максимальный ток измерения — 30 мА;

материал проводника — медная жила 0.1 мм в диаметре длиною 0,45 м.

Для удобства и упрощения расчетов относительно шкал измерительных приборов используют онлайн-калькулятор.

Немного теории об аккумуляторах

Любой аккумулятор (АКБ) — накопитель электрической энергии. При подаче на него напряжения энергия накапливается, благодаря химическим изменениям внутри батареи. При подключении потребителя происходит противоположный процесс: обратное химическое изменение создаёт напряжение на клеммах устройства, через нагрузку течёт ток. Таким образом, чтобы получить от батареи напряжение, его сначала нужно «положить», т. е. зарядить аккумулятор.

Практически любой автомобиль имеет собственный генератор, который при запущенном двигателе обеспечивает электроснабжение бортового оборудования и заряжает аккумулятор, пополняя энергию, потраченную на пуск мотора. Но в некоторых случаях (частый или тяжёлый запуск двигателя, короткие поездки и пр.) энергия аккумулятора не успевает восстанавливаться, батарея постепенно разряжается. Выход из создавшегося положения один — зарядка внешним зарядным устройством.

Как узнать состояние батареи

Чтобы принимать решение о необходимости зарядки, нужно определить, в каком состоянии находится АКБ. Самый простой вариант — «крутит/не крутит» — в то же время является и неудачным. Если батарея «не крутит», к примеру, утром в гараже, то вы вообще никуда не поедете. Состояние «не крутит» является критическим, а последствия для аккумулятора могут быть печальными.

Оптимальный и надёжный метод проверки состояния аккумуляторной батареи — измерение напряжения на ней обычным тестером. При температуре воздуха около 20 градусов зависимость степени зарядки от напряжения на клеммах отключённой от нагрузки (!) батареи следующая:

  • 12.6…12.7 В — полностью заряжена;
  • 12.3…12.4 В — 75%;
  • 12.0…12.1 В — 50%;
  • 11.8…11.9 В — 25%;
  • 11.6…11.7 В — разряжена;
  • ниже 11.6 В — глубокий разряд.

Нужно отметить, что напряжение 10.6 вольт — критическое. Если оно опустится ниже, то «автомобильная батарейка» (особенно необслуживаемая) выйдет из строя.

Правильная зарядка

Существует два метода зарядки автомобильной батареи — постоянным напряжением и постоянным током. У каждого свои особенности и недостатки:

  • Зарядка постоянным напряжением — годится для восстановления заряда не полностью разряженных батарей, напряжение на клеммах которых не ниже 12.3 В. Процесс заключается в следующем: к клеммам батареи подключают источник постоянного тока напряжением 14.2–14.7 В. Окончание процесса контролируют по току потребления: когда он упадёт до нуля, зарядка считается оконченной. Недостаток такого способа — возможно большой начальный зарядный ток; чем сильнее батарея разряжена, тем выше ток. Преимущества метода очевидны — вам не нужно постоянно регулировать ток зарядки, аккумулятору не грозит перезарядка, если вы про него забудете.
  • Зарядка постоянным током — самый распространённый и надёжный способ. В этом режиме ЗУ выдаёт постоянный ток, равный 1/10 ёмкости батареи. Окончание процесса зарядки определяется по напряжению на батарее — когда оно достигнет 14.7 В, заряжать батарею прекращают. Недостаток такого метода — батарею можно испортить, не сняв вовремя с зарядки.

Теоретическая справка

Данный раздел предназначен для тех, кто не имеет должного представления о том, как работает амперметр. Далее будет представлена теоретическая информация об устройстве этого прибора, которая позволит лучше уяснить дальнейший материал. Если вы хорошо ориентируетесь в теме, можете пропустить этот раздел и сразу начать читать следующий.

Автомобильный амперметр состоит из двух элементов:

  • Токовый шунт — небольшой проводник с фиксированным сопротивлением, которое получается путем подбора материала и сечения. Для калибровки шунта на нем делаются пропилы, благодаря чему увеличивается сопротивление.
  • Сам прибор — по сути (да и конструктивно тоже), это простой вольтметр, откалиброванный под определенный шунт.

Амперметр, вопреки всеобщему заблуждению, определяет именно вольты (а не амперы). Сила тока определяется самим прибором, за счет подобранной особым образом шкалы (или алгоритма в случае с цифровыми моделями).

Работает прибор так. Шунт ставится в разрыв провода, по которому требуется сделать измерения. В шунте есть небольшое сопротивление (сотые доли ома), следовательно, напряжение немного снижается (пропорционально установленному сопротивлению). На разных концах провода получается разное напряжение. Благодаря этой разности и знанию сопротивления шунта, амперметр “подсчитывает” текущую силу тока (по закону Ома). Полученные значения выводятся на экран устройства с точностью до десятых, или даже сотых долей ампера.

В теории вычислить силу тока в конкретной цепи можно и без использования амперметра. Сделать это можно следующим образом:

  • Обесточить сеть и выяснить сопротивление проводника на измеряемом участке (измеряется в Омах).
  • Подключить ток и измерить падение напряжения на концах исследуемого участка.
  • Вычислить силу тока с помощью закона Ома, то есть, напряжение разделить на сопротивление провода.

Однако описанный метод, во-первых, неудобный, а во-вторых, точность измерений будет минимальна. Сопротивление в большинстве случаев ничтожно мало и простые приборы (вроде обычного мультиметра) не дают необходимой точности. Специальные автомобильные амперметры в сотни раз более чувствительны, поэтому с высокой точностью измеряют даже малейшую разность напряжения.

Подсоединение цифрового вольтамперметра

Как правильно подключить электросчетчик к проводам

Существует интересный цифровой модуль для постоянного тока, совмещающий функции вольтметра и амперметра в одном устройстве. Вольтамперметрам под силу одновременно показывать и ток, и напряжение при правильном подсоединении.

Пример такого прибора – модель DSN—VS288, состоит из:

  • самого измерительного устройства;
  • 2-проводного кабеля (вход и выход амперметра);
  • 3-проводного кабеля (питание прибора и измерение напряжения).


Вольтамперметр DSN-VS288

Измеряемый диапазон ампервольтметра:

  • от 0 до 100 В по напряжению,
  • от 0 до 10 А по току.

Так как питающее напряжение прибора – 3,5-30 В, схема его включения различается:

  1. При необходимости подсоединить прибор в цепь, напряжение которой лежит в пределах между 3,5 и 30 В, общее питание одновременно используется и для прибора. Черный провод 2-проводного кабеля идет к «минусу», красный – к нагрузке и от другого вывода нагрузки к «плюсу». На 3-проводном кабеле: желтый и красный – соединяются вместе на «плюсе» источника, а черный – остается свободным;
  2. Если напряжение ИП больше или меньше диапазона питания прибора, то вольтамперметр надо подсоединить к индивидуальному ИП. Двухпроводный кабель подключается аналогично, у трехпроводного –красный и черный – идут на «плюс» и «минус» своего ИП, а желтый – на «плюс» основного ИП.


Схемы присоединения DSN-VS288

Каждый тип амперметра подключается по одному принципу, но с обязательным учетом количественного значения измеряемого тока и выбором для этого соответствующих приборов и приспособлений.

Китайский вольтамперметр dsn vc288

Популярная модель вольтметра, которая часто используется радиолюбителями. Обладает следующими характеристиками:

  • Рабочее напряжение постоянного тока от 4,5 до 30 В.
  • Потребление энергии менее 20 мА.
  • Дисплей двухцветный красный и синий. Разрешение 0,28 дюйма.
  • Производит измерения в диапазоне 0 – 100 В, 0 – 10 А.
  • Нижняя граница 0,1 В и 0,01 А.
  • Погрешность 1%.
  • Температурные условия работы от -15 до 75 градусов Цельсия.

Подключение

При помощи вольтметра можно измерить текущее напряжение в сети электроснабжения. Чтобы это проделать, нужно следующее:

  • Черный толстый провод соединить с минусом источника питания.
  • Красный соединяется с нагрузкой, а после с питанием.

Данная схема подключения не предусматривает использование тонкого черного контакта.

Если будет использован сторонний источник питания, то соединение будет следующим:

  • Толстые шнуры подключаются так же, как и в предыдущем примере.
  • Тонкий красный соединяется с плюсом стороннего источника.
  • Черный с минусом.
  • Желтый с плюсом источника.

Данный вольтметр, амперметр удобен еще и тем, что он реализуется в уже откалиброванном состоянии. Но даже если были замечены неточности в его работе, их можно исправить при помощи двух настроечных резисторов на задней панели устройства.

Выбор амперметра для автомобиля

В процессе выбора важно уделять внимание основным критериям:

Максимальный ток шунта. Производители амперметров подбирают шунты под каждую модель амперметров.
Предельный ток. Автомобильный измеритель обязан определять силу тока до 100 Ампер, когда производитель не гарантирует данного значения, то его не нужно покупать. Не нужно брать аппараты, в которых по шкале максимум достигает 300 Ампер, так как в этой ситуации для небольших значений существенно теряется точность.
Направление измерения. Этот критерий оказывает влияние на подключение в цепь

Необходимо уделять внимание моделям, у которых ток меряется в разных направлениях.
Полярность. Бюджетные приборы могут подключаться лишь на один кабель (плюсовой или минусовой)

В более дорогих аналогах полярность не имеет значения.
Класс точности. Данный критерий сказывается на стоимости, но переплачивать за то, чтобы демонстрировались значения до сотых долей Ампера, не стоит. Выбор нужно остановить на средней ценовой категории.

Мощное импульсное зарядное устройство для автомобильного аккумулятора

Такой блок питания был создан после того, как сгорел мой лабораторный БП, который прослужил всего пару месяцев. Было решено из подручных средств собрать мощный сетевой ИБП, который при желании можно было использовать в качестве зарядного устройства для автомобильных аккумуляторов.

За основу была взята схема полумостового инвертора на драйвере IR2153. По идее, такой инвертор можно собрать из подручного хлама, почти все основные компоненты можно снять из компьютерного блока питания.

На входе питания собран простой сетевой фильтр, пленочные конденсаторы 0,1мкФ подобраны с рабочим напряжением 400 Вольт до и после дросселя, сам дроссель выпаян из платы компьютерного блока питания. На кольце намотаны две независимые обмотки проводом 0,9мм, количество витков каждой обмотки — 10.

Термистор на входе питания защищает полевые ключи от бросков напряжения во время включения схемы. Диодный мост — можно взять готовый или же собрать из 4-х выпрямительных диодов с обратным напряжением не менее 400 вольт и током 1,5-3 А, в моем случае использован готовый диодный мост на 600 Вольт 4А.

От емкости электролитов зависит основная мощность, электролиты легко можно найти в любом компьютерном блоке питания. Мощность инвертора с таким раскладом компонентов составляет порядка 200ватт.

Трансформатор тоже был взят готовый, от того же компового блока питания. Поскольку ИБП должен работать в качестве лабораторного БП, то диапазон выходных напряжений должен быть широким. Трансформатор от компьютерного БП позволяет получить 24 Вольт без переделок, чего вполне достаточно для штатных радиолюбительских дел. Увеличить выходное напряжение можно двумя способами — повышением рабочей частоты генератора или же перемоткой импульсного трансформатора.

Ограничительный резистор 47К брать с мощностью 2 ватт, он обеспечивает питание микросхемы, номинал резистора может отклоняться на 10% в ту или иную сторону. В качестве диодного выпрямителя использована мощная сборка Шоттки, которая в себе содержит два мощных диода по 30А.

После выпрямителя напряжение сглаживается конденсатором 50Вольт 1000мкФ, чего вполне достаточно, но при желании можно увеличить емкость.

Полевые ключи обязательно должны быть высоковольтными, можно использовать ключи типа IRF740/IRF840 и другие. Хочу также заметить, что мощность такого блока питания можно поднять до 400 ватт, при этом заменяя только электролиты, крайне не советую повышать мощность более 500 ватт.

Какой же блок питания без защиты от КЗ? Изначально думал реализовать защиту в первичной цепи схемы, но это будет уже трудно настраиваемая схема, поскольку у многих возникают проблемы связанные именно с защитой, а поскольку изначально мне захотелось собрать устройство, которое бы могли повторить радиолюбители не имеющие нужного опыта работы с ИИП, то решил отказаться от идеи, этим не портить и не усложнять основную схему.

Сама защита реализована на отдельной плате, состоит из двух транзисторов. Номиналом шунта можно грубо настроить ток срабатывания защиты, номиналом переменника, можно более точно настроить на нужный ток срабатывания.

При КЗ и перегрузке блока питания, загорится индикатор и питание отключается, блок выходит из защиты моментально, при отсутствии кз или перегруза на выходе.

Полевой транзистор практически любой, с током 20-100A, можно использовать ключи типа irfz44, irfz40, irfz24, irfz46, irfz48, irf3205 и другие. Регулятор мощности — одна из важнейших частей блока питания. За основу взял схему ШИМ регулятора, поскольку такое управление имеет очень много плюсов.

ШИМ — регулятор построен на таймере 555 и мощном ключе IRFZ44, напряжение плавно можно регулировать от . до максимального выходного напряжения с трансформатора.

Данный блок справляется с любыми задачами, которые могут возникнуть в радиолюбительской практике — легкий, мощный и компактный, вольт/амперметр будет цифровым, заказан отдельно на интернет магазине, будет установлен на блок в ближайшее время.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *