Как правильно включить амперметр в цепь
Содержание:
- Меры безопасности
- Где и как используется
- Принцип действия
- Поделиться в соцсетях
- Применение закона Ома
- Расчет шунта для амперметра
- Самый простой вариант
- Характеристики приборов
- Устанавливаем амперметр на трактор МТЗ
- Измерение тока. Амперметр.
- Выбор модели вольтметра
- Советы по выбору амперметра для автомобиля
- Схемы включения амперметра и вольтметра.
Меры безопасности
Процесс измерения тока с помощью мультиметра несложен. При его прохождении требуется соблюдение определенных норм безопасности:
- Перед непосредственным проведением измерительных работ необходимо обесточить цепь.
- Также периодически нужно проводить проверку изоляции кабеля — иногда он может повредить сам себя при длительном использовании и привести к значительному увеличению вероятности поражения электрическим током.
- Использовать при проведении любых ремонтных, монтажных и измерительных работах только резиновые перчатки, которые обладают изоляционными свойствами.
- В помещениях с высоким уровнем влажности воздуха запрещается проведение измерительных работ. Дело в том, что влага обладает высокой электропроводностью, и риск удара током возрастает. При ударе током незамедлительно нужно сообщить об этом в скорую помощь или экстренную службу.
- Проводить работы с электричеством лучше вдвоем.
- После завершения всех работ можно обратно включить питание.
Замер силы тока проводится амперметром или мультиметром
При использовании последнего важно правильно выбрать режим работы и предел, которого может достигнуть ток в цепи. Оба эти прибора боятся высокого напряжения
Где и как используется
Такие измерительные аппараты широко используются в самых разных областях. Они задействованы в промышленности, строительной сфере, предприятиях, которые занимаются распределением и генерацией электро- и теплоэнергии. Также применяются для научных исследований в лабораториях.
Устройство и его разновидности входят в конструкцию других подобных приборов. В омметре, принцип действия которого основан на законе Ома, (устройстве для определения сопротивления) есть резистор R (ограничивает ток) и чувствительная измерительная головка, через которую проходят миллиамперы. Иначе она называется миллиамперметром.
Принцип действия
Устройство современного амперметра предполагает наличие нескольких катушек, среди которых есть подвижная и зафиксированная в одном положении. Соединяются они последовательно или по параллельной схеме. При прохождении через катушки происходит взаимодействие токов, в итоге подвижная катушка отклоняется. Включая прибор амперметр в электроцепь, осуществляется последовательное соединение амперметра с током. В цепях с повышенной силой тока или высоким напряжением, подключается прибор через трансформатор для стабилизации напряжения.
Принцип действия классического аналогового амперметра заключается в том, что параллельно с постоянным магнитом на оси фиксируется стальной элемент со стрелкой. От магнита свойства передаются на данный якорь, причем местоположение и якоря, и магнита, находится на пути прохождения силовых линий. При данном расположении якоря на шкале отображается положение стрелки прибора на нулевом значении.
Когда ток батареи или генератора начинает проходить по шине, вокруг нее появляется магнитный поток. А силовые линии на месте крепления якоря на оси перпендикулярны направлению силовых линий в постоянном магните. От электротока и под воздействием магнитного потока якорь пытается выполнить разворот на 90 градусов, однако этому препятствует поток в магните. От значения и направления тока в шине зависит уровень взаимодействия двух разнонаправленных магнитных потоков. Непосредственно на эту величину стрелка отклоняется от нуля на шкале амперметра.
Принцип функционирования цифрового амперметра заключается в том, что аналого-цифровой элемент преобразует значение силы тока в цифровые показатели, которые отображаются на дисплее прибора. Выдача результата определяется частотой процессора, передающего данные на экран.
Смотрите это видео на YouTube
Поделиться в соцсетях
На этом рисунке изображена схема подключения вольтметра и амперметра с отдельным токоизмерительным шунтом к блоку питания.
Параметры не ниже выходных БП: Uвх — Никакого спама, только полезные идеи!
Питание прибора должно находиться в рамках 4, В. Это и послужило поводом для написания данной статьи, ведь, скорее всего, мы не одни, которые столкнулись с вопросами подключения WR к цепям измерения.
Нижний начинается не от 0, и даже верхний предел вызывает сомнения, в даташите на HT Holtek он ограничен 24V, оригинального даташита не нашел. Также в Интернете встречаются иные модификации этого модуля, но суть переделок от этого не меняется — если Вам попался не такой модуль, просто скорректируйте схему по плате, выпаяв индикатор или прозвонив цепи тестером и вперед! С2 — предположительно 0. Первые три шнура чаще всего объединены для удобства.
Метки: вольтметр, амперметр
На этом рисунке изображена схема подключения вольтметра амперметра первой модели к зарядному устройству из компьютерного блока питания. Поэтому я решил написать специально отдельную статью, в которой подробно расскажу, как и каким образом подключить китайский вольтметр амперметр к зарядному устройству или самодельному регулируемому блоку питания. Таким же образом нужно соединить тонкий красный и желтый контакты. Потребление энергии менее 20 мА.
Подав питание на схему, индикатор начнет светиться. Большинство моделей имеют на своем корпусе специальные резисторы. Не сразу и не вовремя выяснилось, что вход питания у него гальванически связан с минусовым входом шунта. Толстые провода: Черный минус амперметра, синий выход амперметра, красный вход вольтметра. Вывод — вполне сносный измерительный прибор, позволит примерно понять проходящий ток и измерить напряжение, но только до 24 вольт.
Советуем изучить — Ток нагрузки, онлайн расчет
Как подключить вольтамперметр к зарядному устройству — подборка схем
Разрешение 0,28 дюйма. Также BY42A можно встретить в двух вариантах исполнения платы, но цветовая маркировка проводов остается прежней. На AliExpress предлагается похожий измеритель на стм8с, но если посмотреть распиновку, это не он. Минус внешнего источника подать на общий провод схемы. Данный вольтметр, амперметр удобен еще и тем, что он реализуется в уже откалиброванном состоянии.
Это вносит ощутимую погрешность при питании индикатора от того-же источника, с которого измеряется ток погрешность вплоть до ампера с моим шунтом на 50А! Дело в том, что если подключить вольтметр амперметр к регулируемому выходу блока питания, то при понижении напряжения менее 4. Достаточно будет подключить зарядное, где установлен вольтамперметр к батареи, и мы увидим какое сейчас на ней напряжение. Здесь весьма часто протягивает руку помощи Алиэкспресс, оперативно поставляя китайские цифровые измерительные приборы. Вольтметр 100V + амперметр 50А подключаем шунт digital voltmeter ammeter
Применение закона Ома
Основной закон электротехники, он же закон Ома, гласит: I=U/R где I-это ток в амперах,
U-напряжение в вольтах, R-сопротивление в омах. Эта формула говорит нам, что если в разрыв измеряемой
нагрузки (где нужно измерить ток) включить шунт (R) и измеренное на шунте напряжение (U) подставить
в формулу, по двум величинам R и U мы узнаем нужную нам I — протекающий ток.
Пример: мы ожидаем ток 20-30 А, а может и больший от потребления двигателем шуруповерта. У нас
имеется проволочный шунт, сопротивлением 0,035 Ом
Шунт подключается в разрыв плюса или минуса, это не
важно — действующий ток одинаков на всех участках цепи. Так же параллельно шунту подключается вольтметр —
по его показания можно судить о токе, потребляемом нагрузкой
У меня при почти полном торможении вала
двигателя вольтметр показывал около 0,9 В. Подставив известные нам значения в формулу I=0,9/0,035=25,7А —
такой ток потребляет мотор.
Обратите внимание:При измерении пульсирующих и динамически меняющихся токов, цифровой вольтметр
не очень подходит, так как его контроллер очень медленно снимает показания. Для данной цели больше подходит
стрелочный вольтметр.. Подобрав шунт нужного сопротивления, можно измерять любые постоянные или пульсирующие токи, хоть до
300 А и более
Хотя я сомневаюсь, что такие измерения вам понадобятся. Обычные резисторы не подходят в
роли шунта для больших токов, так как обладают малой мощностью рассеяния. Рассчитать примерную мощность
рассеяния шунта можно умножив ожидаемый ток в амперах на падение на нем в вольтах. Для выше приведенного
примера это 25,7*0,9=23,13 Вт, такой мощностью обладают проволочные резисторы.
Подобрав шунт нужного сопротивления, можно измерять любые постоянные или пульсирующие токи, хоть до
300 А и более. Хотя я сомневаюсь, что такие измерения вам понадобятся. Обычные резисторы не подходят в
роли шунта для больших токов, так как обладают малой мощностью рассеяния. Рассчитать примерную мощность
рассеяния шунта можно умножив ожидаемый ток в амперах на падение на нем в вольтах. Для выше приведенного
примера это 25,7*0,9=23,13 Вт, такой мощностью обладают проволочные резисторы.
Расчет шунта для амперметра
Ниже приведена формула для расчета необходимого сопротивления шунта, подключаемого к амперметру для увеличения шкалы измерения.
- RА, IA – сопротивление и ток амперметра
- RШ – сопротивление шунта
- I – ток, который необходимо измерить
Если измеряемый ток значительно больше максимального измеряемого тока амперметра, то этой величиной в формуле выше можно пренебречь по причине её малого влияния на результат. И мы получим отношение RШ/RА=IА/I.
Если необходимо увеличить предел измеряемого тока в m раз, то можно воспользоваться следующим соотношением – RШ=(m-1)/RА
Разберем пример, где все цифры взяты из головы и не имеют под собой справочной обоснованности.
Задача. Амперметр имеет внутреннее сопротивление 10 Ом и максимальный измеряемый ток 1 А. Какое должно быть сопротивление шунта, чтобы можно было измерить ток 100А. Как его рассчитать?
Решение. При увеличении шкалы по амперметру будет течь ток в 1А как и раньше, а по шунту потечет ток 100-1=99А. Получится, что ток будет делиться в отношении 1:99, а сопротивления будут обратно пропорциональны.
Воспользуемся формулой выше и получим RШ=10*1/(100-1)=0,101 Ом.
Самый простой вариант
Кто не хочет заморачиваться с резкой пластика в салоне, проводкой и прочими радостями, связанными с вольтметром, можно пойти путем наименьших усилий. Речь про точно такие же устройства, работающие через прикуриватель. Да, в них есть погрешность примерно в 0.1-0.2 V, но это не столь критино, да и в самом известном китайском магазине, не придется платить больше 400 рублей.
Большинство таких вариантов идет со встроенным термометром (берет данные внутри салона), но вот эта дополнительная функция бесполезно (может, вы с нами не согласитесь). Однако, если поискать, можно найти варианты, где помимо вольтажа и температуры (или вовсе без нее), есть 1-2 USB порта. А вот это действительно удобно.
P.S. Варианты с работой от прикуривателя удобны тем, что вы будете получать информацию, когда это действительно будет нужно, а не всегда с поворотом ключа зажигания.
Характеристики приборов
Конструкция амперметра достаточно проста: стрелка с катушкой, находящейся в поле постоянного магнита. Принцип функционирования рассматриваемого устройства крайне прост: во время его включения по катушке будет течь электроток. Под воздействием силы Ампера катушка будет поворачиваться до того момента, пока упругость возвратных пружин не совпадет с силой Ампера.
Вам это будет интересно Трансформатор для сварки
Нормальное функционирование вольтметра возможно при температурных показателях воздуха не более 25 — 30 градусов с влажностью до 80% и атмосферным давлением 650 — 800 мм ртутного столба. Частота питающей электросети составляет 50 Гц и имеет показатели напряжения 220В (частота не более 400 Гц). На показатели замеров значительное воздействие окажет форма кривой переменного напряжения электросети.
Возможности приспособления оценивают посредством таких параметров и величин:
- Сопротивление рассматриваемого устройства.
- Диапазон замеряемых показателей напряжения.
- Категория точности замеров.
- Диапазон границ частоты напряжения в переменной цепи.
https://youtube.com/watch?v=0fR7iPG36Rk
Устанавливаем амперметр на трактор МТЗ
Как подключить амперметр на тракторе МТЗ-80 или МТЗ-82? В основе бортовой сети этого транспортного средства лежит однопроводная электрическая схема. В качестве второго провода (массы) здесь используются металлические детали – компоненты самой сети и детали кузова. Это достаточно простая электросхема с минимумом проводов, и включение в нее амперметра не доставит сложностей.
Как подсоединить амперметр в тракторе? Подключение измерительного прибора выполняется в следующем порядке:
- провод от стартера до батареи остается нетронутым;
- провод от стартера до генератора (клемма «Ш») отключается;
- на место отключенного провода устанавливается новый, такого же сечения или более толстый;
- к только что подключенному проводу подсоединяют амперметр (любая клемма);
- от этой же клеммы амперметра прокладывается новый провод до блока предохранителей.
В блоке предохранителей токопроводник от измерительного прибора присоединяется на место самого толстого провода в нижнем ряду, который предварительно отключают, изолируют и отводят в сторону. Оставшаяся клемма амперметра соединяется с плюсом батареи. Провод следует использовать того же сечения, что и от генератора до амперметра.
Как соединить амперметр на тракторе с шунтом? Шунт подсоединяется последовательно, к плюсовой или минусовой клемме амперметра выполнять его подключение – не имеет принципиального значения. Если стрелка измерительного прибора будет отклоняться не в ту сторону, шунт просто переворачивают.
После соединения всех проводов проверяют корректность подключения. Способ, как проверить амперметр на тракторе, прост. Для этого проверяют ток разрядки батареи: несколько раз включают и выключают фары транспортного средства. Стрелка амперметра должна отклониться в сторону минусовых значений, если она отклоняется в сторону плюса, провода отсоединяют от измерительного прибора и меняют местами (подключают к другим клеммам).
Измерение тока. Амперметр.
И начнем с измерения тока. Прибор, используемый для этих целей, называется амперметр, и в цепь он включается последовательно. Рассмотрим небольшой пример:
Как видите, здесь источник питания подключен напрямую к резистору, символизирующему полезную нагрузку. Кроме того, в цепи присутствует амперметр, включенный последовательно с резистором. По закону Ома сила тока в данной цепи:
I = \frac{U}{R} = \frac{12}{100} = 0.12
Получили величину, равную 0.12 А, что в точности совпадает с практическим результатом, который демонстрирует амперметр в цепи
Важным параметром этого прибора является его внутреннее сопротивление r_А
Почему это так важно? Смотрите сами — при отсутствии амперметра ток определяется по закону Ома, как мы и рассчитывали чуть выше. Но при наличии амперметра в цепи ток изменится, поскольку изменится общее сопротивление, и мы получим следующее значение:
I = \frac{U}{R_1+r_А}
Если бы амперметр был абсолютно идеальным, и его сопротивление равнялось нулю, то он бы не оказал никакого влияния на работу электрической цепи, параметры которой необходимо измерить, но на практике все не совсем так, и сопротивление прибора не равно 0. Конечно, сопротивление амперметра достаточно мало (поскольку производители стремятся максимально его уменьшить), поэтому во многих примерах и задачах им пренебрегают, но не стоит забывать, что оно все-таки и есть и оно ненулевое.
При разговоре об измерении силы тока невозможно не упомянуть о способе, который позволяет расширить пределы, в которых может работать амперметр. Этот метод заключается в том, что параллельно амперметру включается шунт (резистор), имеющий определенное сопротивление:
R = \frac{r_А}{n\medspace-\medspace 1}
В этой формуле n — это коэффициент шунтирования — число, которое показывает во сколько раз будут увеличены пределы, в рамках которых амперметр может производить свои измерения. Возможно это все может показаться не совсем понятным и логичным, поэтому сейчас мы рассмотрим практический пример, который позволит во всем разобраться.
Пусть максимальное значение, которое может измерить амперметр составляет 1 А. А схема, силу тока в которой нам нужно определить имеет следующий вид:
Отличие от предыдущей схемы заключается в том, что напряжение источника питания на этой схеме в 100 раз больше, соответственно, и ток в цепи станет больше и будет равен 12 А. Напряжение в 1200 В взято исключительно ради примера, сокровенного практического смысла в этом нет ) Итак, из-за ограничения на максимальное значение измеряемого тока напрямую использовать наш амперметр мы не сможем. Так вот для таких задач и нужно использовать дополнительный шунт:
В данной задаче нам необходимо измерить ток I. Мы предполагаем, что его значение превысит максимально допустимую величину для используемого амперметра, поэтому добавляем в схему еще один элемент, который будет выполнять роль шунта. Пусть мы хотим увеличить пределы измерения амперметра в 25 раз, это значит, что прибор будет показывать значение, которое в 25 раз меньше, чем величина измеряемого тока. Нам останется только умножить показания прибора на известное нам число и получим нужное значение. Для реализации задумки мы должны поставить шунт параллельно амперметру, причем сопротивление его должно быть равно значению, которое мы определяем по формуле:
R = \frac{r_А}{n\medspace-\medspace 1}
В данном случае n = 25, но мы проведем все расчеты в общем виде, чтобы показать, что величины могут быть абсолютно любыми, принцип шунтирования будет работать одинаково.
Итак, поскольку напряжения на шунте и на амперметре равны, мы можем записать первое уравнение:
I_А\medspace r_А = I_R\medspace R
Выразим ток шунта через ток амперметра:
I_R = I_А\medspace \frac{r_А}{R}
Измеряемый ток равен:
I = I_R + I_А
Подставим в это уравнение предыдущее выражение для тока шунта:
I = I_А + I_А\medspace \frac{r_А}{R}
Но сопротивление шунта нам также известно (R = \frac{r_А}{n\medspace-\medspace 1}). В итоге мы получаем:
I = I_А\medspace (1 + \frac{r_А\medspace (n\medspace-\medspace 1)}{r_А}\enspace) = I_А\medspace n
Вот мы и получили то, что и хотели. Значение, которое покажет амперметр в данной цепи будет в n раз меньше, чем сила тока, величину которой нужно измерить.
С измерениями тока в цепи все понятно, давайте перейдем к следующему вопросу, а именно определению напряжения.
Выбор модели вольтметра
Схема цифрового вольтметра. Современный рынок устройств для автомобилей предлагает широкий выбор моделей вольтметров. Наибольшей популярностью пользуются такие типы приборов:
- аналоговые «стрелочные» вольтметры –, устанавливаются преимущественно на отечественные автомобили, подключаясь к приборной панели вместо часов,
- цифровые датчики, подключаемые к гнезду прикуривателя,
- цифровые вольтметры, монтируемые в приборную панель.
Чаще всего используются последние два типа приборов, так как они сочетают в себе современный внешний вид, точность показаний и простоту установки.
Максимально соответствующие реальности результаты измерений предоставляют вольтметры, подключаемые непосредственно в приборную панель
Хотя их монтаж иногда сопряжен с некоторыми трудностями, но установив их, вы сможете получить постоянный контроль состояния аккумулятора, что особенно важно при большом количестве подключаемых узлов.вольтметр автомобильный. Для повышения точности вольтметра рекомендуется выбирать те модели, в которых для показаний напряжения отведено 4 разряда. Так вы сможете снимать значения вплоть до сотых долей вольта
Так вы сможете снимать значения вплоть до сотых долей вольта
Для повышения точности вольтметра рекомендуется выбирать те модели, в которых для показаний напряжения отведено 4 разряда. Так вы сможете снимать значения вплоть до сотых долей вольта.
Советы по выбору амперметра для автомобиля
Во многих магазинах можно найти китайские амперметры ценой в 200-400 рублей — такие приборы для использования в автомобиле не годятся. Они рассчитаны на небольшие токи и моментально сломаются при подключении в сеть автомобиля. Поэтому необходимо приобретать специально предназначенные для установки в бортовую сеть автомобиля приборы. В них шунты представляют собой толстые пластины из манганина (и других материалов, не меняющих свое сопротивление при нагреве), благодаря чему способны выдерживать солидные токи.
Рассмотрим основные критерии, по которым необходимо выбирать амперметр:
- Предел измерений силы тока. Необходимо, чтобы прибор мог измерять ток до 100 ампер. Если этот предел ниже, то такое устройство не подходит для использования в автомобиле. В то же время приобретать модель, рассчитанную на огромную силу тока (300 и более ампер) не имеет смысла. При увеличении максимальной нагрузки сильно снижается точность.
- Предельный ток шунта. В большинстве случаев производителями шунты подбираются под конкретную модель амперметра, а также на определенный максимальный ток.
- Направление измерения. От этого зависит оптимальный способ подключения (о них будет рассказано ниже). Для подсоединения методом АКБ-генератор оптимальный вариант — односторонняя модель. Для других способов следует приобрести более продвинутую модель, позволяющую измерять ток в любом направлении.
- Полярность прибора. Недорогие модели обычно подключаются на плюсовой, или на минусовой провод. Поэтому при выборе необходимо учитывать предполагаемый способ подключения. Альтернативный вариант – купить модель, которая позволяет подключаться к проводу любой полярности.
- Точность измерений. От этого показателя, в первую очередь, зависит стоимость амперметра. Однако для большинства автолюбителей точность до сотых долей ампера не нужна. Поэтому нет смысла переплачивать за повышенную точность.
Схемы включения амперметра и вольтметра.
На рисунках 4.3 и 4.4 приведены схемы включения вольтметра и амперметра через измерительные трансформаторы напряжения (ТН) и тока (ТТ) соответственно.
Рис. 4.3. Измерительный трансформатор напряжения.
Схема включения вольтметра:
?/,, U2_ первичное и вторичное напряжения ТН; Wv W2 — первичная и вторичная обмотки ТН; V — вольтметр
Рис. 4.4. Измерительный трансформатор тока. Схема включения амперметра:
/р /2 — первичный и вторичный токи ТТ; Wv W2 — первичная и вторичная обмотки ТТ; А — амперметр
Для измерения тока в электрических цепях служат амперметры, миллиамперметры и микроамперметры различных систем. Их включают в цепь последовательно, и через них проходит весь ток, протекающий в цепи (рис. 4.4)
Важно, чтобы при различных электрических измерениях амперметр как можно меньше влиял на электрический режим цепи, в которую он включен. Поэтому амперметр должен иметь малое собственное сопротивление по сравнению с сопротивлением цепи. Присоединять амперметр к источнику тока (питания) без нагрузки нельзя, так как по его обмотке в этом случае пройдет большой ток, и она может перегореть
По той же причине нельзя включать амперметр параллельно нагрузке
Присоединять амперметр к источнику тока (питания) без нагрузки нельзя, так как по его обмотке в этом случае пройдет большой ток, и она может перегореть. По той же причине нельзя включать амперметр параллельно нагрузке.
Каждый амперметр рассчитан на определенный максимальный ток, при превышении которого амперметр может перегореть. Если амперметром нужно измерить ток, превышающий допустимый для данного амперметра, то параллельно амперметру присоединяют шунт, т.е. расширяют пределы измерения амперметра.
Шунт представляет собой относительно малое, но точно известное сопротивление. Схема включения амперметра с шунтом показана на рис. 4.5, а.
Шунт должен иметь четыре зажима для устранения влияния на сопротивление шунта переходных сопротивлений контактов. Шунты изготовляют из манганина — сплава, у которого температурный коэффициент сопротивления практически равен нулю.
Рис. 4.5. Схема включения амперметра:
а — с шунтом; 6 — через трансформатор тока; для схемы а: 1 — шунт; 2 — нагрузка;
для схемы б: 1 — измерительный трансформатор тока; 2 — нагрузка
Рис. 4.6. Схема соединения трех амперметров через два трансформатора тока:
Л j и Л2 — начало и конец первичной обмотки трансформатора тока; И, и И2 — начало и конец вторичной обмотки трансформатора тока; Л — амперметры; iA, iB, ic — токи в фазах
Рис. 4.7. Схема включения вольтметра:
R — сопротивление цепи; V— вольтметр
На рисунке 4.6 приведена схема соединения трех амперметров через два трансформатора тока.
Как видно из схемы, через первый амперметр проходит ток iA, через второй — iB, следовательно, ток в третьем амперметре, равный сумме двух линейных токов iA и iB, равен третьему линейному току: ic= iA + iB.
Для измерения напряжения на участке цепи применяют вольтметры. Вольтметр включают параллельно тем точкам цепи (М, N), напряжение между которыми надо измерить (рис. 4.7).
Вольтметр не должен изменять напряжение на измеряемом участке цепи, по этой причине ток, проходящий через вольтметр, должен быть много меньше, чем ток на измеряемом участке.
Для того чтобы вольтметр не вносил заметных искажений в измеряемое напряжение, его сопротивление должно быть большим по сравнению с сопротивлением участка цепи, на котором измеряется напряжение. Любой вольтметр рассчитан на определенное предельное напряжение, но с помощью подключения последовательно с вольтметром добавочного сопротивления /?доб можно измерять большие напряжения (рис. 4.8, б).
Рис. 4.8. Схемы включения амперметра и вольтметра в электрическую цепь:
а — без расширения пределов измерения; б — с расширением пределов измерения;
Яш — сопротивление шунта; /?доб — добавочное сопротивление
На рисунке 4.9 приведена схема включения ваттметра в однофазную цепь высокого напряжения через измерительные трансформаторы тока и напряжения.
Рис. 4.9. Схема включения ваттметра в однофазную цепь высокого напряжения через измерительные трансформаторы тока и напряжения: V— вольтметр; А — амперметр; W— ваттметр
На рисунке 4.10 приведена схема включения амперметров и вольтметров в трехфазную цепь. Как видно из схемы, амперметры включены через измерительные ТТ, а вольтметры —через измерительные ТН. Такие схемы включения измерительных приборов характерны для высоковольтных сетей напряжением 6 (10) кВ и выше.
Рис. 4.10. Включение амперметров и вольтметров в трехфазную цепь с помощью измерительных трансформаторов тока и напряжения