Как работает система непосредственного впрыска топлива gdi

Содержание:

Устройство и принцип действия системы GDI

В наши дни системы, аналогичные Gasoline Direct Injection, используют и другие производители автомобилей, обозначая данную технологию TFSI (Audi),  FSI или TSI (Volkswagen), JIS (Toyota), CGI  (Mercedes), HPI (BMW). Принципиальными отличиями этих систем являются рабочее давление, конструкция и расположение топливных форсунок.

Конструктивные особенности двигателей GDI

Система питания воздухом двигателя GDI

Классическая система непосредственного впрыска топлива конструктивно состоит из следующих элементов:

  • Топливный насос высокого давления (ТНВД). Для корректной работы системы (создания тонкого распыливания) бензин в камеру сгорания должен подаваться под высоким давлением (аналогично дизельным моторам) в пределах 5…12 МПа.
  • Электрический топливный насос низкого давления. Подает топливо из бензобака к ТНВД под давлением 0,3…0,5 МПа.
  • Датчик низкого давления. Фиксирует уровень давления, созданного электрическим насосом.
  • Форсунки высокого давления. Осуществляют впрыск топлива в цилиндр. Оснащены вихревыми распылителями, позволяющими создавать требуемую форму топливного факела.
  • Поршень. Имеет особую форму с выемкой, которая предназначена для перенаправления горючей смеси к свече зажигания двигателя.
  • Впускные каналы. Имеют вертикальную конструкцию, благодаря чему возникает обратный вихрь (закручен в противоположную сторону по сравнению с другими типами двигателей), выполняющий функцию направления смеси к свече зажигания и обеспечивающий лучшее наполнение камеры сгорания воздухом.
  • Датчик высокого давления. Располагается в топливной рампе и предназначен для передачи информации в электронный блок управления, который изменяет уровень давления в зависимости от актуальных режимов работы двигателя.

Режимы работы системы прямого впрыска

Схема работы непосредственного впрыска топлива

Как правило, двигатели с непосредственным впрыском имеют три основных режима работы:

  • Впрыск в цилиндр на такте сжатия (послойное смесеобразование). Принцип работы в этом режиме заключается в образовании сверхбедной смеси, что позволяет максимально экономить топливо. В начале в камеру цилиндра подается воздух, который закручивается и сжимается. Далее под высоким давлением осуществляется впрыскивание топлива и перенаправление полученной смеси к свече зажигания. Факел получается компактным, поскольку формируется на этапе максимального сжатия. При этом топливо как бы окутано прослойкой воздуха, что уменьшает тепловые потери и предотвращает предварительный износ цилиндров. Режим используется при работе мотора на малых оборотах.
  • Впрыск на такте впуска (гомогенное смесеобразование). Состав топлива в этом режиме близок к стехиометрическому. Подача воздуха и бензина в цилиндр происходит одновременно. Факел смеси при таком впрыске имеет коническую форму. Применяется при мощных нагрузках (скоростной езде).
  • Двухстадийный впрыск на такте сжатия и впуска. Применяется при резком ускорении машины, движущейся на малой скорости. Двойной впрыск в цилиндр позволяет снизить вероятность детонации, которая может возникнуть в моторе при резкой подаче обогащенной смеси. Вначале (на такте впуска воздуха) подается небольшое количество бензина, что приводит к образованию обедненной смеси и снижению температуры в камере сгорания цилиндра. На такте максимального сжатия подается оставшаяся часть топлива, что делает смесь богатой.

Причины отказа, связанные с датчиками инжектора.

Датчик коленчатого вала (датчик коленвала).

При полном отказе этого датчика автомобиль скорее всего, даже не заведётся. Отказ датчика коленчатого вала неисправность достаточно редкая, но всё же встречается. Датчик может давать неверные показания, в случае если он неплотно прикручен к корпусу мотора. От вибрации он может менять свое положение в посадочном месте, что крайне недопустимо. При увеличении расстояния между датчиком и задающим диском (насечки, на которые срабатывает датчик) начинаются сбои в работе двигателя. Косвенным признаком необходимости проверки датчика коленчатого вала служит отсутствие зажигания. Именно импульсы с датчика коленвала использует ЭБУ для расчета момента подачи искры и впрыска топлива. Это значит, что искра может отсутствовать не только из-за неисправности системы зажигания, но и из-за отказа датчика коленчатого вала.

Датчик коленчатого вала

Датчик положения распредвала.

Вторая причина неисправности инжекторного мотора. При сбоях в его работе или при поломке форсунки двигатель переключается в асинхронный режим подачи смеси. Это значит, что смесь в цилиндры впрыскивается не зависимо от того, в каком положении и такте находится поршень. В таких случаях как правило возрастает расход топлива и загорается лампа Check Engin.

Датчик положения распредвала

Датчик температуры охлаждающей жидкости ДТОЖ.

Лампа Check Engin загорится в таком случае или при обрыве провода датчика или при коротком замыкании. этого датчика. Если же датчик сильно врёт и показывает неправильную температуру, то автомобиль может и вовсе не завестись, причём причина проста.

Представьте, что истинная температура двигателя +20°C, а датчик показывает -20°C. Что происходит в таком случае? ЭБУ даёт команду на впрыск большего количества топлива, думая, что мотор холодный. В результате происходит перенаполнение цилиндров топливом и двигатель просто захлёбывается бензином. Даже если автомобиль и завелся, с неисправным датчиком температуры будет повышенный расход топлива.

Датчик температуры охлаждающей жидкости ДТОЖ

Следует учитывать, что на автомобиле могут быть установлены два и больше датчика температуры ОЖ. Один из них дает показания для ЭБУ, второй — на приборную панель (в некоторых авто панель берёт показания из ЭБУ). Внимательно изучите какой датчик в вашем автомобиле, где стоит и за что каждый из них отвечает.

Датчик кислорода (лямбда зонд).

При поломке датчика кислорода будет повышенный расход топлива, могут появиться перебои в работе двигателя. Датчик чаще всего продолжает работать, но его показания отличаются от реальных. В результате чего ухудшается расход и общая динамика машины. Могут появиться перебои в работе двигателя. В большинстве случаев, в память ЭБУ заноситься код ошибки, при этом загорается лампа, сигнализирующая о неисправности инжектора — Check Engin.

Датчик кислорода (лямбда зонд)

Датчик массового расхода воздуха — ДМРВ.

Машина работает с перебоями, плохо запускается двигатель, глохнет на ходу или при сбросе педали газа? Все эти причины могут являться причиной неисправности датчика расхода воздуха. Если мотор не заводиться как обычно, а заводиться только с нажатием педали газа, то причина может быть в ДМРВ. Этот датчик показывает сколько воздуха поступает в двигатель. ЭБУ в свою очередь, основываясь на показаниях, рассчитывает, сколько необходимо подать топлива в цилиндры.

Датчик массового расхода воздуха — ДМРВ

Если датчик исправен, то следует проверить подсос воздуха после него. Так как в таком случае реальное количество воздуха от замеренного будет отличаться. Вообще для инжектора подсос воздуха — одна из самых распространенных проблем. В ЭТОЙ статье подробно описано как легко найти и устранить подсос воздуха самому.

Датчик положения дроссельной заслонки — ДПДЗ.

Если автомобиль «не отзывчив» на педаль газа, плавают или самопроизвольно меняются обороты, неустойчивый холостой ход, то причиной неисправности может быть ДПДЗ. Автомобиль может даже не запуститься, если ДПДЗ даёт неверные показания.

Датчик положения дроссельной заслонки — ДПДЗ

Представьте, что вы запускаете двигатель, не нажимая на педаль газа, как и положено, а датчик показывает ЭБУ что педаль нажата на половину. Конечно же ЭБУ увеличивает количество впрыскиваемого топлива, считая, что вы нажали на педаль и нужно поддать газку. Как итог — залитые цилиндры, автомобиль глохнет, либо не заводиться совсем. Лампа Check Engin в таком случае может и не загореться, ведь датчик работает, он просто даёт неверные показания.

Принцип работы распределенного впрыска топлива

Управление системой впрыска современного автомобиля осуществляет компьютер, в автомобильной терминологии носящий название электронного блока управления двигателем.

Для вычисления оптимального момента для открытия топливных форсунок и времени, в течение которого они должны оставаться открытыми, блок управления использует показания различных датчиков.

Масса воздуха, поступающего в двигатель, измеряется датчиком массового расхода воздуха. Это один из важнейших показателей. Кроме него, при определении количества топлива компьютер опирается на данные по температуре двигателя, температуре всасываемого воздуха, скорости вращения коленчатого вала, угла открытия дроссельной заслонки и динамике ее открытия. Рассчитав количество топлива, которое может полностью сгореть при данной массе воздуха в цилиндрах, компьютер подает сигнал форсункам на открытие. Сигналом служит электрический импульс нужной длительности. Во время подачи сигнала форсунки остаются в открытом положении, и топливо, которое в магистрали находится под давлением, впрыскивается во впускной коллектор.

Как работает инжектор

Итак, как известно, в современных авто карбюраторная система уже полностью замещена инжекторными двигателями.  Последние, в отличие от карбюраторных, повышают мощность автомобиля, улучшают динамику его разгона, экологичность. При том, что расход топлива при этом уменьшается.

Кстати, высокие экологические показатели инжектор сохраняет без различных  регулировок и настроек. Ведь там имеет место самонастройка топливовоздушной смеси, которая стала возможна благодаря кислородному датчику, установленному на выпускном коллекторе (лямбда-зонд).

Устройство инжектора.

Подача топлива в инжекторный движок производится форсунками, которые могут  располагаться или на впускном коллекторе (моновпрыск), или недалеко от впускных клапанов цилиндров (распределенный впрыск), или  непосредственно в ГБЦ — головке блока цилиндров (прямой впрыск — впрыск топлива осуществляется в саму камеру сгорания), о том, как промыть форсунок своими руками смотрим вот здесь.

 

Помимо форсунок инжектор включает в себя следующие исполнительные элементы:

  • ЭБУ (контроллер) — обрабатывает данные от датчиков и управляет системами подачи топлива и зажигания;
  • бензонасос (электрический) — он подает топливо;
  • различные датчики: температуры, коленвала, распредвала, детонации;
  • регулятор давления — поддерживает разницу давления воздуха во впускном коллекторе и форсунках.

Также все инжекторные моторы оснащаются каталитическим нейтрализатором (катализатором) в виде «сот», на котором нанесен активный слой, способствующий догоранию топлива, остающемуся в выхлопных газах. Однако заправка этилированным бензином длительное время приводит к определенным поломкам, из-за которых катализатор теряет такую способность.

Датчик кислорода в инжекторе и его работа.

Наиболее известным типом является циркониевый кислородный датчик, подробнее в статье — что такое датчик кислорода. Он есть переключатель (к слову, один из самых важных), который резко изменяет свое состояние на отметке 0.5% кислорода, содержащегося в выхлопных газах.

Устройство интерфейса датчика выглядит следующим образом: прогретый датчик (300 градусов Цельсия и выше) при богатой смеси (содержание кислорода 0.5%) — от 0.2 до 0.45 Вольт

И не важно, какой точно при этом уровень напряжения, учитывается лишь то, где он расположен по отношению к средней линии. То есть топливо добавляется, когда ECU определяет сигнал бедной смеси, и уменьшается, когда богатой. Следовательно, подача топлива регулируется в зависимости от практических результатов сгорания, что дает возможность системе приспособиться к разным условиям работы

Следовательно, подача топлива регулируется в зависимости от практических результатов сгорания, что дает возможность системе приспособиться к разным условиям работы.

Известно, что надежно данный датчик работает только в хорошо прогретом состоянии, следовательно, ECU система TCCS заметит его показания только в случае прогрева двигателя до нужного уровня. Однако не всех это устраивает. Поэтому для придания скорости этому процессу в датчик кислорода часто монтируют электрический подогреватель.

Принцип работы механического инжектора.

Хотя ранее использовались иные конструкции инжекторных моторов с впрыском. К примеру, известен такой двигатель, в котором управление происходит при помощи механических устройств. Управление здесь — дозировка объема топлива при помощи специального клапана. Клапан же управляется системой рычагов, которую приводит в действие воздушный поток. Сегодня механически управляемые клапаны уже полностью изжили себя.

В настоящее же время в каждой системе впрыска есть встроенная подсистема самодиагностики, которая позволяет установить неисправности узлов, датчиков и исполнительных механизмов системы. После самодиагностики компьютер вырабатывает диагностические коды. Они извлекаются из памяти компьютера и расшифровываются согласно таблицам. У каждого производителя свой вариант извлечения данных кодов. Найти практически всех их можно в свободном доступе в интернете, подробнее о диагностике инжектора своими руками, можно прочитать тут. Кроме того рекомендую ознакомиться с инструкцией, о том как почистить инжектор.

Видео

Автомобильные дворники.

Что такое круиз-контроль?

Как перевести PSI в атмосферы?

Толщиномер покрытий — назначение, принцип работы, виды устройств.

Виды смесеобразования

В ДВС для полного сгорания топлива на каждый грамм бензина нужно 14,7 грамм воздуха. Это  гомогенная стехиометрическая смесь. Если воздуха будет меньше- не всё топливо сможет сгореть. Если воздуха будет больше, чем 17 грамм на каждый грамм бензина, то возникают проблемы воспламенения такой смеси от свечи. Но эти проблемы решаются непосредственным впрыском: топливо концентрируется вокруг свечи, а возле стенок цилиндра остаётся чистый воздух почти без содержания топлива.

Для эффективного сгорания топлива реализовано несколько типов смесеобразования:

  • послойное (гетерогенное);
  • стехиометрическое гомогенное;
  • гомогенное.

Гетерогенная смесь (послойное смесеобразование). Такая смесь применяется при движении автомобиля при низких нагрузках, расход топлива получается небольшой, а соотношение бензин-воздух может достигать 1:40.

Воздух поступает в цилиндр по одному дроссельному каналу, второй в это время закрыт. Это позволяет придавать поступающему воздуху завихрения, а выемки на днище поршня позволяют завихрениям сохраняться до конца такта сжатия.

Впрыск топлива осуществляется в конце такта сжатия, бензин хорошо перемешивается с воздухом благодаря завихрениям, и максимальная концентрация бензина возникает вокруг свечи зажигания, куда бензин перемещается воздушным потоком.

Топливо располагается исключительно вокруг свечи зажигания, в то время как между днищем поршня, стенками цилиндра и топливо-воздушной смесью располагается прослойка из воздуха и отработавших газов. Вот это и называется послойное смесеобразование.

Воздушная подушка выполняет сразу две функции:

  1. Уменьшает теплопотери, так как выполняет роль теплового изолятора, что позволяет использовать больше энергии с пользой
  2. Уменьшает детонацию топлива— детонация возникает из-за слишком быстрого распространения взрывной волны, а воздушная подушка выступает в роли демпфера.

Стехиометрическое гомогенное смесеобразование. Тут воздуха ровно столько, чтобы хватило сжечь весь бензин, 1:15 по массе. Впрыск топлива происходит на такте впуска, бензин поступает в камеру сгорания одновременно с воздухом и хорошо перемешивается. Такая смесь используется на промежуточных режимах двигателя, а также на холостом ходу.

Гомогенная смесь образуется на максимальных режимах работы двигателя, когда дроссельная заслонка максимально открыта. Эта смесь получается не гомогенной, а с коэффициентом избытка воздуха 1,5, то есть воздуха здесь в полтора раза больше, чем нужно для сжигания топлива.

Такая смесь будет обеднённой, и на двигателе без непосредственного впрыска возгорания не произошло бы, так как смесь с соотношением топлива к воздуха более чем 1:17 уже затруднительны, а здесь разрыв в 1,5 раза больше. Но так как впрыск непосредственный, то бензин из форсунки можно направить непосредственно в район свечи зажигания.

Таким образом, и топливо экономится, и отдача от сгорания топлива выше.

Плюсы и минусы

Преимущества, которыми обладает центральная система впрыска:

  • простота и дешевизна конструкции;
  • для смены режимов работы достаточно провести регулировку одной форсунки;
  • при смене карбюратора на инжектор (моновпрыск) существенных изменений в систему питания не производится.

К недостаткам относится то, что не выходит достигнуть высоких показаний экологичности. Поэтому на сегодняшний день автомобили с моновпрыском нельзя встретить в продаже и эксплуатации в развитых странах Америки, Европы и Азии. Разве что в странах третьего мира они будут беспрепятственно колесить по дорогам.

Прямой впрыск топлива: устройство системы непосредственного впрыска

Как уже было сказано выше, горючее в подобных системах питания подается непосредственно в камеру сгорания двигателя. Это значит, что форсунки распыляют бензин не во впускном коллекторе, после чего топливно-воздушная смесь поступает через впускной клапан в цилиндр, а впрыскивают топливо в камеру сгорания напрямую.

Первыми бензиновыми двигателями с непосредственным впрыском стали моторы GDI на моделях японской компании Mitsubishi. В дальнейшем схема получила широкое распространение, в результате чего сегодня ДВС с такой системой подачи топлива можно встретить в линейке многих известных автопроизводителей.

Например, концерн VAG представил ряд моделей Audi и Volkswagen с атмосферными и турбированными бензиновыми двигателям TFSI, FSI и TSI, которые получили непосредственный впрыск топлива. Также двигатели с прямым впрыском производит компания BMW, Ford, GM, Mercedes и многие другие.

Такое широкое распространение непосредственный впрыск топлива получил благодаря высокой экономичности системы (около 10-15% по сравнению с распределенным впрыском), а также более полноценному сгоранию рабочей смеси в цилиндрах и снижению уровня токсичности отработавших газов.

Преимущества непосредственного впрыска бензина

Уменьшение дросселирования при работе двигателя на бедных послойной и гомогенной смесях.

При работе двигателя на этих смесях коэффициент избытка воздуха изменяется в пределах от 1,55 до 3. При этом дроссельнаязаслонка открывается на больший угол, то есть впуск воздуха в цилиндры осуществляется с меньшим сопротивлением.

Работа двигателя на бедных смесях.

При применении послойного смесеобразования удается эффективно сжигать бедные смеси с коэффициентом избытка воздуха от 1,6 до 3, а при работе двигателя на гомогенной бедной смеси коэффициент избытка воздуха равен приблизительно 1,55.

Так как горение смеси происходит главным образом вблизи свечи зажигания, снижаются потери тепла в стенки цилиндра исоответственно повышается термический коэффициент полезного действия.

Сжигание гомогенной смеси с высоким содержанием перепускаемых отработавших газов.

Благодаря высокой турбулизации заряда цилиндра двигателя удается эффективно сжигать гомогенные бедные смеси с содержанием отработавших газов до 25%. Чтобы впустить в цилиндры то же количество воздуха, какое поступает в них при перепускенебольших доз отработавших газов, нужно открывать дроссельную заслонку на больший угол. При этом воздух засасывается вцилиндры с меньшим сопротивлением, то есть снижаются насосные потери.

Степень сжатия

При непосредственном впрыске бензина затрачиваемое на его испарение тепло отбирается у поступившего в цилиндрыдвигателя воздуха. В результате снижается вероятность детонационного сгорания и степень сжатия может быть повышена.Повышение степени сжатия приводит к росту давления в конце сжатия и соответственно к увеличению термического коэффициента полезного действия.

Расширение диапазона принудительного холостого хода с выключенной подачей топлива.

Частота вращения холостого хода, на которой производится возобновление подачи топлива может быть снижена, так как впрыскиваемое топливо практически не осаждается на стенках цилиндра и большая его часть может быть немедленно использована. Поэтому двигатель работает устойчиво с пониженной частотой вращения.

Непосредственный..

“Goliath GP700” стал первым серийным автомобилем, двигатель которого получил впрыск топлива.

ВПРЫСК (его еще иногда называют прямым) отличается от предыдущих типов систем питания тем, что в данном случае форсунки подают топливо прямо в цилиндры (минуя впус¬кной коллектор), как у дизельного двигателя.

В принципе такая схема системы питания не нова. Еще в первой половине прошлого века ее использовали на авиационных двигателях (например на советском истребителе “Ла-7”). На легковых машинах прямой впрыск появился чуть позже – в 50-х годах ХХ века сначала на автомобиле “Goliath GP700”, а затем на знаменитом “Mercedes-Benz 300SL”. Однако через некоторое время автопроизводители практически отказались от применения непосредственного впрыска, он остался лишь на гоночных автомобилях.

Дело в том, что головка блока цилиндров у двигателя с прямым впрыском получалась очень сложной и дорогой в производстве. Кроме того, конструкторам долгое время не удавалось добиться стабильной работы системы. Ведь для эффективного смесеобразования при прямом впрыске необходимо, чтобы топливо хорошо распылялось. То есть подавалось в цилиндры под большим давлением. А для этого требовались специальные насосы, способные его обеспечить.. В итоге на первых порах двигатели с такой системой питания получались дорогими и неэкономичными.

Однако с развитием технологий все эти проблемы удалось решить, и многие автопроизводители вернулись к давно забытой схеме. Первой была компания “Mitsubishi”, в 1996 году установившая двигатель с непосредственным впрыском топлива (фирменное обозначение – GDI) на модель “Galant”, затем подобные решения стали использовать и другие компании. В частности, “Volkswagen” и “Audi” (система FSI), “Peugeot-Citroёn” (HPA), “Alfa Romeo” (JTS) и другие.

Почему же такая система питания вдруг заинтересовала ведущих автопроизводителей? Все очень просто – моторы с прямым впрыском способны работать на очень бедной рабочей смеси (с малым количеством топлива и большим – воздуха), поэтому они отличаются хорошей экономичностью. Вдобавок подача бензина непосредственно в цилиндры позволяет поднять степень сжатия двигателя, а следовательно и его мощность.

Система питания с прямым впрыском может работать в разных режимах. Например, при равномерном движении автомобиля со скоростью 90-120 км/ч электроника подает в цилиндры очень мало топлива. В принципе такую сверхбедную рабочую смесь очень трудно поджечь. Поэтому в моторах с прямым впрыском используются поршни со специальной выемкой. Она направляет основную часть топлива ближе к свече зажигания, где условия для воспламенения смеси лучше.

При движении с высокой скоростью или при резких ускорениях в цилиндры подается значительно больше топлива. Соответственно из-за сильного нагрева частей двигателя возрастает риск возникновения детонации. Чтобы избежать этого, форсунка впрыскивает в цилиндр топливо широким факелом, ко¬торый заполняет весь объем камеры сгорания и охлаждает ее.

Если же водителю требуется резкое ускорение, то форсунка срабатывает два раза. Сначала в начале такта впуска распыляется небольшое количество топлива для охлаждения цилиндра, а затем в конце такта сжатия впрыскивается основной заряд бензина.

Но, несмотря на все свои преимущества, двигатели с непосредственным впрыском пока еще недостаточно распространены. Причина – высокая стоимость и требовательность к качеству топлива. Кроме того, мотор с такой системой питания работает громче обычного и сильнее вибрирует, поэтому конструкторам приходится дополнительно усиливать некоторые детали двигателя и улучшать шумоизоляцию моторного отсека.

А как дела у дизелей?

Перейдём к дизельным агрегатам. Перед их топливной системой стоит задача подачи горючего под очень высоким давлением, которое, смешиваясь в цилиндре со сжатым воздухом, воспламеняется само.

Вариантов решения этой задачи создано очень много – применяется и непосредственный впрыск в цилиндры, и с промежуточным звеном в виде предварительной камеры, помимо этого, существуют различные компоновки насосов высокого давления (ТНВД), что тоже придаёт разнообразия.

Тем не менее, современные мотористы отдают предпочтение двум типам систем, осуществляющих подачу солярки прямо в цилиндры:

  • с насос-форсунками;
  • впрыск Common Rail.

Трудности реализации и необходимые профилактические меры

При всех положительных моментах эксплуатации двигателя на переобедненных смесях у современных автомобилей имеются проблемы, у которых нет «общих точек соприкосновения» со старым семейством MPI-впрыска, что в свою очередь вызывает трудности в диагностике. Чтобы понять, какие изменения последовали в конструкции, и сравнить, надо обратиться к самому началу появления данного типа системы впрыска в производстве. Конкретную реализацию разберем на примере моделей VW AG. Итак, сравнение поршневой группы атмосферного и турбированного ДВС…

В первом случае видна схема «встречных потоков» описанных ранее, во втором очевидно играет гораздо большую роль предварительное завихрение потока воздуха во впускном коллекторе (в этом одно из различий исполнения данных моторов) и полная направленная циркуляция в полном объеме цилиндра.

Предварительное завихрение воздушного потока во впускном коллекторе и обедняет классическую однородную (гомогенную) смесь при смешивании воздушного потока с топливом. На практике первая схема обеспечивает лучшее охлаждение поршня (а с ним – эффективную борьбу с детонационными явлениями при рабочем цикле, о чем подробнее поговорим далее). В то же время для таких моторов характерна проблема зимнего пуска, при котором свечи просто «заливало» топливом, и мотор не запускался, а самое смешное в этом вопросе (думаю, владельцы Passat B6 первых годов выпуска об этом хорошо помнят), что самая простая «жигулевская» и даже не первой свежести свеча помогала запустить замерзший ДВС, после чего следовала еще одна замена – возвращение оригинальных свечей назад. Последовало порядка десятка изменений версий программного обеспечения блока управления ДВС, прежде чем удалось решить эту проблему. Разумеется, владельцев ДВС с турбокомпрессором такие проблемы не коснулись. Пуск на гомогенной смеси при минусовой температуре воздуха отработан автопроизводителями до мелочей. В дальнейшем на цепных моторах 2008 года и далее эксперименты с формой днища поршня проводить не стали. Обычно такие поршни обладают плоской поверхностью со стандартными выемками под клапана.

Или имеют ярко выраженную сферическую вогнутую поверхность по всей ширине гильзы цилиндров, назначение которой будет понятно немного позже.

А теперь посмотрим на организацию подачи топлива и воздуха на этих ДВС:

Используются форсунки с 6-ю отверстиями, что положительно влияет на качество распыления топлива

Обратите внимание на расположение топливной форсунки и впускного канала: они находятся в одной плоскости, а это значит, суммарного восходящего потока уже не получится. Учитывая, что топливо должно успеть равномерно распределиться по топливовоздушному заряду, получаем единственный вариант —организацию встречного потока с довольно большим дефицитом по времени эффективного распыления

Разумеется, об эффективном охлаждении поршней в этом случае речь тоже не идет. Давайте посмотрим, что думают об этом сами создатели.

Довольно простое решение подачи топлива непосредственно в зону свечи, т.е. топливный заряд оборачивается, условно говоря, в «кокон» воздушного заряда (эффект дополнительного охлаждения смеси достигается ее изолированием воздушным потоком, если говорить точнее). В итоге в зоне электрода свечи мы имеем обогащенную, легко воспламеняемую смесь, а в остальных местах камеры сгорания – переобедненную. Но путь смешивания топливного и воздушного зарядов очень короткий, в отличие от схемы, обсуждаемой ранее, а нормальное перемешивание, с отражением от поверхности поршня и равномерным распределением по фронту потока (как это было с атмосферным мотором), к сожалению, невозможно. Именно этот аспект и влияет на возможную проблемную работу ДВС в целом, а причина возникновения трудностей стабильного воспламенения довольна простая:

Работа при послойном образовании топливной смеси

Из-за особенностей строения коллектора (наличия заслонок, которые закрывают низы) перекрывается доступ к низу. На такте впуска воздух поступает в верхнюю часть цилиндра, после некоторого вращения коленчатого вала на такте сжатия происходит впрыск топлива, который и требует большого давления насоса. Далее полученная смесь сносится при помощи воздушного вихря на свечу. В момент подачи искры бензин уже будет хорошо перемешан с воздухом, что способствует качественному сгоранию. При этом воздушная прослойка создает своеобразную оболочку, которая снижает потери и повышает коэффициент полезного действия, тем самым уменьшая расход топлива.

Следует отметить, что работа при послойном впрыске топлива является наиболее перспективным направлением, так как в этом режиме можно достичь наиболее оптимального сгорания топлива.

Однородное образование топливной смеси 

В данном случае происходящие процессы понять еще легче. Топливо и необходимый для сгорания воздух почти одновременно попадают в цилиндр двигателя на такте впуска. Еще до достижения поршнем верхней мертвой точки топливовоздушная смесь находится в смешанном состоянии. Образование высококачественной смеси происходит благодаря высокому давлению впрыска. Система переключается с одного режима работы на другой благодаря анализу поступающих данных. Это в результате и приводит к повышению экономичности двигателя.

Система непосредственного впрыска: конструктивные особенности

Итак, давайте в качестве примера возьмем двигатель FSI с его так называемым «послойным» впрыском. Система включает в себя следующие элементы:

  • контур высокого давления;
  • бензиновый ТНВД;
  • регулятор давления;
  • топливную рампу;
  • датчик высокого давления;
  • инжекторные форсунки;

Начнем с топливного насоса. Указанный насос создает высокое давление, под которым топливо подается к топливной рампе, а также на форсунки. Насос имеет плунжеры (плунжеров может быть как несколько, так и один в насосах роторного типа) и приводится в действие от распредвала впускных клапанов.

Кстати, в схеме используется специальный клапан-предохранитель, который стоит в рейке. Указанный клапан нужен для того, чтобы избежать слишком высокого давления топлива и тем самым защитить отдельные элементы системы. Рост давления может возникать по причине того, что горючее имеет свойство расширяться при нагреве.

Датчик высокого давления является устройством, которое измеряет давление в топливной рейке. Сигналы от датчика передаются на ЭБУ (электронный блок управления двигателем), который, в свою очередь, способен изменять давление в топливной рейке.

Если же говорить о системе прямого впрыска, вместе с датчиком высокого давления топлива для ее работы задействованы: датчик коленчатого вала, ДПРВ, датчик положения дроссельной заслонки, воздухорасходомер, датчик температуры воздуха во впускном коллекторе, датчик температуры ОЖ и т.д.

Благодаря работе этих датчиков на ЭБУ поступает нужная информация, после чего блок посылает сигналы на исполнительные устройства. Это позволяет добиться слаженной и точной работы электромагнитных клапанов, форсунок, предохранительного клапана и ряда других элементов.

Как работает система непосредственного впрыска топлива

Главным плюсом непосредственного впрыска является возможность добиться различных типов смесеобразования. Другим словами, такая система питания способна гибко изменять состав рабочей топливно-воздушной смеси с учетом режима работы двигателя, его температуры, нагрузки на ДВС и т.д.

  • Послойное смесеобразование задействуется тогда, когда нагрузки на двигатель низкие или средние, а обороты коленвала небольшие. Если просто, в таких режимах смесь несколько обедняется в целях экономии. Стехиометрическое смесеобразование предполагает приготовление такой смеси, которая легко воспламеняется, при этом не является слишком обогащенной.
  • Гомогенное смесеобразование позволяет получить так называемую «мощностную» смесь, которая нужна при больших нагрузках на двигатель. На обедненной гомогенной смеси в целях дополнительной экономии силовой агрегат работает на переходных режимах.
  • Когда задействован режим послойного смесеобразования, дроссельная заслонка широко открыта, при этом впускные заслонки находятся в закрытом состоянии. В камеру сгорания воздух подается с высокой скоростью, возникают завихрения воздушных потоков. Горючее впрыскивается ближе к концу такта сжатия, впрыск производится в область расположения свечи зажигания.

За короткое время до того, как на свече появится искра, образуется топливно-воздушная смесь, в которой коэффициент избыточного воздуха составляет 1.5-3. Далее смесь воспламеняется от искры, при этом вокруг зоны воспламенения сохраняется достаточно количество воздуха. Указанный воздух выполняет функцию температурного «изолятора».

В этом случае горючее впрыскивается еще на такте впуска, в результате чего удается получить однородную смесь. Избыток воздуха имеет коэффициент, близкий к единице. Такая смесь легко воспламеняется и полноценно сгорает по всему объему камеры сгорания.

Обедненная гомогенная смесь создается тогда, когда дроссельная заслонка полностью открыта, а впускные заслонки закрыты. В этом случае воздух активно движется в цилиндре, а впрыск горючего приходится на такт впуска. ЭСУД поддерживает избыток воздуха на отметке 1.5.

Дополнительно к чистому воздуху могут быть добавлены отработавшие газы. Это происходит благодаря работе системы рециркуляции отработавших газов EGR. В результате выхлоп повторно «догорает» в цилиндрах без ущерба для мотора. При этом снижается уровень выброса вредных веществ в атмосферу.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *