Как узнать нумерацию цилиндров в двигателе

Порядок работы цилиндров в разных двигателях

Итак, с теоретическим положением о влиянии интервала воспламенения на равномерность работы, мы познакомились. Рассмотрим традиционный порядок работы цилиндров в двигателях с разной схемой .

  • порядок работы 4 цилиндрового двигателя со смещением шеек коленвала 180° (интервал между воспламенениями) : 1-3-4-2 или 1-2-4-3;
  • порядок работы 6 цилиндрового двигателя (рядного) с интервалом между воспламенениями 120°: 1-5-3-6-2-4;
  • порядок работы 8 цилиндрового двигателя (V-образный) с интервалом между воспламенениями 90°: 1-5-4-8-6-3-7-2

Важным предупреждением для водителей, которые только познают принципы устройства автомобиля, и пытаются своими руками производить ремонт узлов и механизмов. Не путайте такие понятия, как нумерация цилиндров и порядок зажигания.

От чего зависит нумерация цилиндров двигателя

Тем не менее, важно знать, что каким бы ни была компоновка двигателя и расположение цилиндров, в цилиндре № 1 – главный цилиндр, всегда располагается свеча № 1. Естественно, это порядок, в котором пронумерованы цилиндры любого двигателя

От чего зависит расположение и нумерация цилиндров двигателя:

Естественно, это порядок, в котором пронумерованы цилиндры любого двигателя. От чего зависит расположение и нумерация цилиндров двигателя:

  • тип привода: передний или задний;
  • тип двигателя: рядный или V-образный;
  • способ установки двигателя: поперечный или продольный;
  • направление вращения двигателя: по или против часовой стрелки.

Расположение цилиндров в многоцилиндровых двигателях, выглядит следующим образом:

  • вертикально – то есть в один ряд, без угловых отклонений;
  • наклонно – под углом 20°;
  • V- образно – в два ряда. Углы между рядами могут быть 90 или 75 градусов;
  • оппозитно (горизонтально) – угол между цилиндрами равен 180°. Такое расположение цилиндров применяется в двигателях для автобусов, что позволяет размещать двигатель под полом салона, освобождая полезную площадь.

Нумерация цилиндров на разных типах двигателей

Как таковой, строгой международной системы расположения и нумерации цилиндров двигателя не существует. И это плохо. Посему, прежде, чем приступать к какому-либо виду ремонта двигателя или системы зажигания, окунитесь с головой в Инструкцию по эксплуатации и ремонту именно вашего авто.

Заднеприводные 4-х и 6-ти рядные двигатели в США имеют главный цилиндр №1 от радиатора, остальные цилиндры нумеруются по направлению к салону. Но, есть и обратная нумерация, когда главным цилиндром считается тот, который ближе к салону.

У французских двигателей нумерация цилиндров происходит со стороны коробки передач. А нумерация цилиндров V-образных двигателей идёт с правого полубока, т.е. со стороны крутящего момента.

Переднеприводные автомобили, как правило, имеют поперечно установленный двигатель. Здесь нумерация цилиндров идет с одной из сторон, а цилиндр №1 расположен со стороны пассажирского места.

V-образные многоцилиндровые двигатели имеют главный цилиндр со стороны водителя в ряду, который ближе к салону. Затем идут нечетные цилиндры двигателя, а с противоположной стороны (ближе к радиатору) – чётные.

Поэтому, для того, чтобы вы окончательно не запутались из-за отсутствия единого международного стандарта расположения и нумерации цилиндров двигателя, пользуйтесь Руководством по эксплуатации от производителя.

Удачи вам в изучении нумерации и расположения цилиндров двигателя.

carnovato.ru

Цикл работы двигателя, рабочие такты

Появившиеся очень давно двигателя внутреннего сгорания как работающие на бензине, так и дизельном топливе, и применяемые сейчас, делятся на два вида:

  1. Двухтактные;
  2. Четырехтактные.

Как видено из названия сводится различие принципа функционирования двигателя в количестве тактов – движений поршня, за которые он выполняет определенный цикл работ.

Для четырехтактного двигателя определено 4 такта в результате которых один поршень выполняет полный цикл – впуск, сжатие, рабочий ход и выпуск.

В каждом из этих циклов в цилиндре двигателя выполняются определенные процессы. Все они направлены на достижение одной цели – обеспечение преобразования энергии сгорания топлива во вращение коленчатого вала.

Так, при такте впуска в цилиндр подается горючая смесь, состоящая из топлива и воздуха, без которого процесс горения невозможен. Причем образование и подача этой смеси у бензинового и дизельного двигателя отличаются.

Далее идет такт сжатия, при котором поступившая смесь сжимается в объеме. Делается это для того, чтобы в меньшем объеме образовалось больше горючей смеси.

Уменьшение объема позволяет при следующем такте обеспечить более высокое КПД при сгорании топлива.

Рабочий ход – единственный из всех тактов, при нем энергия отдается, а не забирается и для него существуют все остальные такты.

После сжатия происходит воспламенение смеси, у бензиновых двигателей – за счет искры, проскакиваемой между электродами свечи накаливания, у дизелей – за счет высокого давления, при котором смесь нагревается настолько, что воспламеняется.

При воспламенении смеси выделяется энергия, которая воздействует на поршень, заставляя его двигаться вниз, при этом выделенная от сгорания энергия передается поршнем на коленвал посредством шатуна.

Выпуск – такт, направленный на очистку полости цилиндра от продуктов горения. После очистки цикл повторяется вновь.

Из всего вышесказанного выходит, что один цикл движения поршня в цилиндре направлен только на получение одного такта – рабочего хода, все остальные такты только помогают получить его, причем для их выполнения задействуется часть энергии, которую отдает такт рабочего хода.

Каждый такт двигателя соответствует определенному движению поршня в цилиндре.

Существуют две крайние точки положения поршня, получивших название мертвых точек.

Одна из них верхняя – выше поршень уже подняться в цилиндре не может, а вторая – нижняя, при которой он ниже не опускается.

Обеспечиваются эти точки кривошипом коленчатого вала, к которому поршень присоединен шатуном.

При движении поршня от одной точки к другой, а затем наоборот, и выполняются такты. То есть, при движении поршня от нижней точки (НМТ) к верхней (ВМТ) могут выполняться два такта – сжатие и выпуск, а при движении наоборот – впуск и рабочий ход.

Имея представление о тактах, можно говорить и о типах двигателей, а их два – 2-тактный и 4-тактный.

У каждого из этих двигателей цикл производится по-разному, что влияет на их конструкцию и многие другие параметры и характеристики.


Оппозитный двигатель, достоинства и недостатки

Двухтактный и четырёхтактный двигатель

В чём разница между этими двумя видами?

Двухтактные моторы почти не используются на автомобилях в силу своих особенностей. Они гораздо легче и проще в своей конструкции из-за отсутствия газораспределительного механизма. Тяга равномернее, литровая мощность выше, а вес меньше. Из минусов можно выделить крайнюю неэкологичность, большее потребление бензина и масла.

В карбюраторном 2-тактнике ещё и придётся готовить смесь из масла и бензина или заказывать специальное масло для двухтактных двигателей. Использование двухтактного ДВС идеально подходит для негабаритных устройств. К примеру газонокосилки, пилы, снегоуборочные машины. В общем там, где нужны более равномерные обороты.

Как считается нумерация цилиндров в Киа Каренс?

Двигатель 1.6 л. Периодически троит. При проверке ОБД показал, что пропуски зажигания во втором цилиндре.

Хочу поменять катушку зажигания второго цилиндра, но не знаю нумерации. Какой из них второй? Есть книга по сервису машины, но в ней нумерации цилиндров нет.

Доброго времени суток. Для чего нужен пневмо пистолет на двигателе 2.0 crdi Киа Каренс 2010 года? Нужно ли менять его при замене ремня ГРМ? Заранее спасибо за ответ.

Двигатель рядный, четырёхцилиндровый, нумерация со стороны ремня навесных агрегатов.

Открыл капот, смотришь на двигатель — слева первый, справа четвёртый, где-то посередине второй и третий.

@andrienko.1966 —> Спасибо, Николаевич. Пойду разбираться.

Нумерация цилиндров от ГРМ, т.е. если стоять лицом к авто, слева ГРМ, слева направо 1-2-3-4. Попробуйте поменять местами катушки зажигания, если ошибка уйдет на другой цилиндр, тогда меняйте катушку, если не уйдет, то проверьте свечи, компрессию, провода катушки, форсунку и ее провода.

@andrienko.1966 —> Спасибо, Михаил. Так и буду действовать.

@andrienko.1966 —> Если свечи не меняли, то лучше с них начать.

Всё будет хорошо!

Номер ошибки напишите. Бывает люди спешат сделать какую-то замену по крупному. А причина сидит на другом участке, например ослаб контакт провода соединения с катушкой — на колодке соединения проводов (разболтался или окислился пин) или разорван один из проводов на сгибе внутри оплётки.

Как действуют ДВС V6

Для эффективности порядка работы сегодняшних шестицилиндровых двигателей таковой строится также по особой системе. Типичный порядок работы 6 цилиндрового двигателя рядного исполнения – метод 1–5–3–6–2–4. В рассматриваемом форм-факторе силовой агрегат получается достаточно длинным и требует большого подкапотного пространства.

Чтобы снизить габариты, иногда применяют «вэ-подобную» систему. Схема порядка работы «горшков» 6 цилиндровых современных двигателей, V образного форм-фактора – очередность активации 1-4-2-5-3-6.

Агрегат от Audi, для которого актуален указанный порядок работы V-образного шестицилиндрового автомобильного двигателя:

Кривошипно-шатунный механизм

  • Маховик поддерживает инерцию коленвала для вывода поршней из верхних или нижних крайних положений, а также для более равномерного его вращения.
  • Коленчатый вал преобразует линейное движение поршней во вращение и передает его через механизм сцепления на первичный вал КПП.
  • Шатун передает усилие, прикладываемое к поршню на коленчатый вал.
  • Поршневой палец создает шарнирное соединение шатуна с поршнем. Изготавливается из легированной высокоуглеродистой стали с цементацией поверхности. По сути является толстостенной трубкой со шлифованной наружной поверхностью. Бывает двух видов: плавающий или закрепленный. Плавающие свободно перемещаются в бобышках поршней и во втулке, запрессованной в головку шатуна. Не выпадает палец из этой конструкции благодаря стопорным кольцам, устанавливающимся в пазы бобышек. Закрепленные удерживаются в головке шатуна за счет горячей посадки, а в бобышках вращаются свободно.

По большому счёту, нам, обычным автолюбителям, совершенно не обязательно знать порядок работы цилиндров двигателя. Ну, работает и работает. Да, с этим трудно не согласится. Не нужно до того момента, пока вы не пожелаете своими руками выставить зажигание или не займетесь регулировкой зазоров клапанов.

И совершенно не будет лишним знание о порядке работы цилиндров двигателя автомобиля, когда вам нужно будет подсоединить высоковольтные провода к свечам, либо трубопроводы высокого давления у дизеля. А если вы затеете ремонт головки блока цилиндров?

Ну согласитесь, смешно будет ехать на автосервис для того, чтобы правильно установить ВВ провода. Да и ехать-то как? Если двигатель троит.

Что значит порядок работы цилиндров двигателя?

Последовательность, с которой чередуются одноименные такты в разных цилиндрах и называется порядком работы цилиндров.

От чего зависит порядок работы цилиндров? Есть несколько факторов, а именно:

-расположение цилиндров двигателя: однорядное или V-образное; -количество цилиндров; -конструкция распредвала; -тип и конструкция коленвала.

Читать дальше: Масло transmax dex iii multivehicle

Рабочий цикл двигателя

Рабочий цикл двигателя состоит из газораспределительных фаз. Последовательность этих фаз должна равномерно распределяться по силе воздействия на коленчатый вал. Именно в этом случае происходит равномерная работа двигателя.

Обязательным условием является то, что цилиндры, работающие последовательно, не должны находиться рядом. Для этого и разрабатываются производителями двигателей, схемы порядка работы цилиндров двигателя. Но, во всех схемах порядок работы цилиндров начинает свой отсчет с главного цилиндра №1.

У двигателей одного типа, но разных модификаций, работа цилиндров может отличаться. Например, двигатель ЗМЗ.

Порядок работы цилиндров двигателя 402 – 1-2-4-3, в то время как порядок работы цилиндров двигателя 406 – 1-3-4-2.

Если углубится в теорию работы двигателя, но так, чтобы не запутаться, то мы увидим следующее.

Полный рабочий цикл 4-х тактного двигателя проходит за два оборота коленвала. В градусах это равно 72° . У 2-х тактного двигателя 360° .

Колена вала смещают на определенный угол для того, чтобы вал находился под постоянным усилием поршней. Этот угол напрямую зависит от количества цилиндров и тактности двигателя.

Порядок работы 4 цилиндрового двигателя, однорядного, чередование тактов происходит через 180°, ну а порядок работы цилиндров может быть 1-3-4-2 (ВАЗ) или 1-2-4-3 (ГАЗ).

Порядок работы 6 цилиндрового рядного двигателя 1-5-3-6-2-4 (интервал между воспламенением составляет 120° ).

Порядок работы 8 цилиндрового V-образного двигателя 1-5-4-8-6-3-7-2 (интервал между воспламенениями 90° ).

Существует, например, порядок работы 12 цилиндрового двигателя W-образного: 1-3-5-2-4-6 – это левые головки блока цилиндров, а правые: 7-9-11-8-10-12

Для того, чтобы вам был понятен весь этот порядок цифр, рассмотрим пример. У 8 цилиндрового двигателя ЗиЛ порядок работы цилиндров следующий: 1-5-4-2-6-3-7-8. Кривошипы расположены под углом 90° .

То есть если в 1 цилиндре происходит рабочий цикл, то через 90 градусов поворота коленвала, рабочий цикл происходит в 5 цилиндре, и последовательно 4-2-6-3-7-8. В нашем случае один поворот коленвала равен 4 рабочим ходам.

Естественным образом напрашивается вывод, что 8 цилиндровый двигатель работает плавне и равномернее, чем 6 цилиндровый.

Скорее всего, глубокое знание порядка работы цилиндров двигателя вашего автомобиля, вам не понадобится. Но общее представление об этом иметь необходимо. А если вы задумаете произвести ремонт, например головки блока цилиндров, то эти знания лишними не будут.

Успехов вам в изучении порядка работы цилиндров двигателя вашего автомобиля.

Порядок работы

Часто при ремонте двигателя возникает необходимость отсоединения высоковольтных проводов. Некоторые водители, отсоединив провода, не запоминают порядок, в котором они были установлены. В итоге может возникнуть путаница с проводами, а при неправильном их подключении машина не заведется. Чтобы избежать неприятной ситуации, нужно знать, как осуществляется порядок работы ДВС.


Подключение проводов на ВАЗ 2109

Принцип действия силового агрегата основан на таком свойстве газов, как способности расширяться при нагревании. Стандартный четырехцилиндровый двигатель работает в 4 такта:

  1. На первом такте осуществляется «впуск» воздушно-топливной смеси и части отработанных газов. Эта смесь полностью занимает объем цилиндра.
  2. На втором такте происходит процесс «сжатия». При этом клапаны закрыты, а поршень благодаря движению коленчатого вала и шатуну движется вверх. Рабочая смесь заполняет камеру сгорания.
  3. На третьем такте, называемом «расширением», благодаря свечам зажигания возникает искра, которая воспламеняет рабочую смесь. Расширяющиеся газы своим давлением действуют на поршень и заставляют двигаться его вниз. Затем благодаря шатуну начинает двигаться коленвал.
  4. На четвертом такте осуществляется процесс «выпуска» отработанных газов. Через выпускные клапаны они поступают в выхлопную систему автомобиля ВАЗ 2109.

Для того чтобы работа в многоцилиндровом двигателе осуществлялась плавно, а коленчатый вал не испытывал неравномерных нагрузок, необходимо, чтобы рабочие процессы осуществлялись в определенном порядке.

Существуют разные схемы, которые определяют, в какой последовательности будут функционировать цилиндры. В ВАЗ 2109 используется схема: 1-3-4-2. Нумеруют цилиндры начиная от передней крышки силового агрегата.

Нумерация цилиндров на ВАЗ 2109

Если представить рабочий процесс двигателя через цилиндры, то порядок работы таков:

  1. В первом цилиндре осуществляется движение вверх, идет рабочий процесс: сгорает воздушно-топливная смесь, расширяются газы.
  2. В третьем осуществляется процесс «сжатия», при котором поршень движется вверх.
  3. В четвертый поступает рабочая смесь при движении поршня вниз, таким образом, осуществляется процесс «впрыска».
  4. Во втором поршень движется вверх, при этом отработанные газы выходят через выпускные клапана.

21 Порядок работы многоцилиндрового двигателя

Порядок работы многоцилиндрового двигателя

зависит от типа двигателя (расположения цилинд­ров) и от количества цилиндров в нем.

Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени). Для определения этого угла продолжительность цикла, выраженную в градусах поворота коленчатого вала, делят на число цилиндров. Например, в четырехцилиндровом четырехтактном двигателе такт расширения (рабочий ход) происходит через 180° (720 : 4) по отношению к предыдущему, т. е. через половину оборота коленчатого вала. Другие такты этого двигателя чередуются также через 180°. Поэтому шатунные шейки коленчатого вала у четырех цилиндровых двигателей расположены под углом 180° одна к другой, т. е. лежат в одной плоскости. Шатунные шейки первого и четвертого цилиндров направлены в одну сторону, а шатунные шейки второго и третьего цилиндров — в противоположную сторону. Такая форма коленчатого вала обеспечивает равномерное чередование рабочих ходов и хорошую уравновешенность двигателя, так как все поршни одновременно приходят в крайнее положение (два поршня вниз и два вверх).

Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы четырехцилиндровых отечественных     тракторных     двигателей 1—3—4—2. Это означает, что после рабочего хода в первом цилиндре следующий рабочий ход происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.

При выборе порядка работы двигателя конструкторы стремятся равномернее распределить нагрузку на коленчатый вал.

Одноименные такты у четырехтактного шестицилиндрового двигателя совершаются через поворот коленчатого вала на 120°. Поэтому шатунные шейки расположены попарно в трех плоскостях под углом 120°. У четырехтактного восьмицилиндрового двигателя одноименные такты происходят через 90° поворота коленчатого вала и его шатунные шейки расположены крестообразно под углом 90° одна к другой.

В восьмицилиндровом четырехтактном двигателе за два оборота коленчатого вала совершается восемь рабочих ходов, что способствует его равномерному вращению.

Порядок работы восьмицилиндровых четырехтактных двигателей 1— 5—4—2—6—3—7—8, а шестицилиндровых 1—4—2—5—3—6.

Зная порядок работы цилиндров двигателя, можно правильно распределить провода по свечам зажигания, присоединить топливопроводы к форсункам и отрегулировать клапаны.

22 Силы и моменты, действующие в кмш одноцилиндрового двигателя

При такте «сгорание—расширение» сила Р1, приложенная к поршневому пальцу, слагается из двух сил:

  • силы P давления газов на поршень

  • силы инерции Pи (сила инерции переменна по величине и направлению)

Суммарную силу P1 разложить на можно две силы: силу S, направленную вдоль оси шатуна, и силу N, прижимающую поршень к стенкам цилиндра.

Силу S перенесем в центр шатунной шейки, а к центру коленчатого вала приложим две равные силе S и параллельные ей силы S1 и S2. Тогда совместное действие сил S1 и S создаст (на плече R) крутящий момент, приводящий во вращение коленчатый вал, а сила S2 нагрузит коренные подшипники и через них будет передаваться на картер двигателя.

Разложим силу S2 на две перпендикулярно направленные силы N1 и Р2. Сила N1 численно равна силе N, но направлена в противоположную сторону; совместное действие сил N и N1 образует момент Nl, который стремится опрокинуть двигатель в сторону, обратную вращению коленчатого вала. Сила P2 численно равная силе Р1, действует вниз, а сила Р действует на головку цилиндра вверх, т.е. в противоположную сторону. Разность между силами Р и P1 представляет собой силу инерции поступательно движущихся масс Ри. Наибольшей величины эта сила достигает в момент изменения направления движения поршня.

Вращающиеся массы шатунной шейки, щек кривошипа и нижней части шатуна создают центробежную силу Рц, направленную по радиусу кривошипа в от сторону центра вращения.

Таким образом, в кривошипно-шатунном механизме одноцилиндрового двигателя, кроме крутящего момента, возникающего на коленчатом валу, действует ряд неуравновешенных моментов и сил, как то:

  • реактивный, или опрокидывающий, момент Nl, воспринимаемый опорами двигателя через картер

  • сила инерции поступательно движущихся масс Ри, направленная по оси цилиндра

  • центробежная сила вращающихся масс Рц, направленная по кривошипу вала

Боковая сила N достигает наибольшей величины при расширении газов, когда поршень прижимается к левой стенке цилиндра, чем и объясняется ее обычно больший износ.

Технические характеристики бензиновых двигателей

ОБЩИЕ СВЕДЕНИЯ
Параметр Модель двигателя
DR DS NP WH
Число цилиндров 4 4 4 5
Диаметр цилиндра, мм 81,0 81,0 81,0 79,5
Ход поршня,мм 86,4 86,4 86,4 77,4
Рабочий объем, см3 1781 1781 1781 1921
Степень сжатия 8,8 10,0 10,0 10,0
Номинальная мощность, кВт (л.с.)/ Частота вращения коленчатого вала, мин–1 55 (75)/ 4500 60 (90)/ 5200 66 (90)/ 5200 74 (100)/ 5600
Максимальный крутящий момент, Н·м/ Частота вращения коленчатого вала, мин–1 138/ 2500 145/ 3300 150/ 3300 150/ 3300
Порядок работы цилиндров 1–3–4–2 1–2–4–5–3
Блок цилиндров Чугунный безгильзовый
Головка блока Из алюминиевого сплава, в головку запрессованы направляющие втулки и седла клапанов
Поршни Из алюминиевого сплава со стальными вставками с двумя компрессионными и одним маслосъемным кольцом
Коленчатый вал Стальной кованый
Фазы газораспределения впускных клапанов, град:
– открытие до ВМТ 5 1 3 0,5
– закрытие после НМТ 21 37 33 36,5
Фазы газораспределения выпускных клапанов, град:
– открытие до НМТ 41 42 41 37
– закрытие после ВМТ 3 2 5 1
Зазор между кулачками распределительного вала и регулировочными шайбами клапанов на холодном двигателе (при температуре головки цилиндров 20° С), мм:
– впускных клапанов 0,2 ± 0,05 0,2 ± 0,05* 0,2 ± 0,05
– выпускных клапанов 0,4 ± 0,05 0,4 ± 0,05 0,4 ± 0,05
Масляный фильтр Champions
Давление масла в системе смазки двигателя, кг/см2:
– на холостом ходу 0,3 ± 0,15 0,3 ± 0,15 0,3 ± 0,15 От 0,15 до 0,45
при частоте вращения коленчатого вала 2000 мин–1 1,8 ± 0,2 1,8 ± 0,2 1,8 ± 0,2 2,0
Воздушный фильтр Mann C2852/2 или Purflux A460 Mann C22117 или Purflux A515
Топливный насос Механический диафрагменного типа марки Pierburg Механичес- кий диафраг- менного типа
Карбюратор Pierburg 1В3 Pierburg 2Е2 Keihin 26-30DC Keihin
Система впрыска топлива
Система зажигания Бесконтактная с датчиком-распределителем, катушкой зажигания и коммутатором
Угол опережения зажигания, град 18 ± 1 18 ± 1 18 ± 1 18 ± 1
Свечи зажигания Bosch W7D, W7DC, W8D, W8DC; Beru 14-7D, 14-7DU, 14-8D, 14-8DU; Champion N8Y, N10Y Bosch W6DO, Beru 14-6DU, Champion N79Y Bosch W6DO, Beru 14-6DU, Champion N79Y Bosch W6DO, Beru 14-6D, Champion N7Y
Зазор между электродами свечей, мм 0,6 – 0,8 0,8 – 0,9 0,8 – 0,9 0,8 – 0,9
* Для автомобилей с автоматической трансмиссией.
Параметр Модель двигателя
KP WC KU RT NF
Число цилиндров 5 5 5 5 5
Диаметр цилиндра, мм 81,0 79,5 81,0 81,0 82,5
Ход поршня, мм 77,4 86,4 86,4 77,4 86,4
Рабочий объем, см3 1994 2144 2226 1994 2309
Степень сжатия 10,0 9,3 10,0 10,0 10,0
Номинальная мощность, кВт (л.с.)/ Частота вращения коленчатого вала, мин–1 85 (115)/ 5200 100 (136)/ 5700 101 (138)/ 5700 85 (115)/ 5200 98 (133)/ 5600
Максимальный крутящий момент, Н·м/ Частота вращения коленчатого вала, мин–1 170/ 3000 185/ 4800 185/ 3500 170/ 3000 186/ 4000
Порядок работы цилиндров 1–2–4–5–3
Блок цилиндров Чугунный безгильзовый
Головка блока Из алюминиевого сплава, в головку запрессованы направляющие втулки и седла клапанов
Поршни Из алюминиевого сплава со стальными вставками с двумя компрессионными и одним маслосъемным кольцом
Коленчатый вал Стальной кованый
Фазы газораспределения впускных клапанов, град:
– открытие до ВМТ 1 2,5 2 3,9
– закрытие после НМТ 37 52,5 41 31 41,2
Фазы газораспределения выпускных клапанов, град:
– открытие до НМТ 37 48 40 31 45,9
– закрытие после ВМТ 1 6 1 2 4,9
Зазор между кулачками распределительного вала и регулировочными шайбами клапанов на холодном двигателе (при температуре головки цилиндров 20° С), мм:
– впускных клапанов 0,2 ± 0,05
– выпускных клапанов 0,4 ± 0,05
Масляный фильтр Champions
Давление масла в системе смазки двигателя, кгс/см2:
– на холостом ходу От 0,15 до 0,45 От 0,15 до 0,45 От 0,15 до 0,45 От 0,15 до 0,45 От 0,15 до 0,45
– при частоте вращения коленчатого вала 2000 мин–1 2,0 2,0 2,0 2,0 2,0
Воздушный фильтр Mann C22117 или Purflux A515 Bosch
Топливный насос Электрический погружного типа марки Bosch Электри- ческий марки Bosch
Карбюратор
Система впрыска топлива Механическая система R-Jetronic фирмы Bosch Механи- ческая система KE-Jetronic фирмы Bosch
Система зажигания Бесконтактная с датчиком-распределителем, катушкой зажигания и коммутатором Электрон- ная типа VEZ фирмы Bosch
Угол опережения зажигания, град 18 ± 1 18 ± 1 18 ± 1 18 ± 1 15 ± 1
Свечи зажигания Bosch W6DO, Beru 14-6DU, Champion N79Y Bosch W6D, W6DO, Beru 14-6DU, Champion N79Y Bosch W6DС, Beru 14-6DU, Champion N7YС Bosch W7DTС, Beru 14-7DTU, Champion N7BYC Bosch W7DTС, Beru 14-7DTU
Зазор между электродами свечей, мм 0,7 – 0,8 0,8 – 0,9 0,8 – 0,9 0,7 – 0,9 0,7 – 0,9

В двигателях типа DC выпуска с сентября 1985 года, NP, KU, NF установлены гидравлические толкатели клапанов.

Техническая характеристика

ОБЩИЕ СВЕДЕНИЯ

Расположение цилиндров и направление вращения распределителя зажигания

Расположение цилиндров (со стороны ремня)

Правая сторона (задняя) 1–3–5
Левая сторона (у радиатора) 2–4–6
Порядок работы цилиндров 1–2–3–4–5–6

Головка блока цилиндров

1 – выпускной левый коллектор;2 – прокладка;3 – термозащитный экран выпускного коллектора;4 – прокладка;5 – выпускной правый коллектор;6 – термозащитный экран выпускного коллектора;7 – прокладка головки блока цилиндров;8 – кожух зубчатого ремня;9 – правая головка блока цилиндров;10 – распределительный вал, управляющий впускными клапанами;11 – распределительный вал, управляющий выпускными клапанами;12 – шайба;13 – упорное кольцо;14 – шкив распределитель ного вала;15 – стопорное кольцо;16 – прокладка;17 – крышка головки блока цилиндров;18 – прокладки;19 – впускной коллектор;20 – кронштейн холостого шкива;21 – прокладка;22 – штуцер системы охлаждения;23 – прокладка;24 – кронштейн воздухозаборника;25 – EGR–труба;26 – прокладки;27 – EGR–клапан и вакуумный модулятор;28 – вакуумные трубы;29 – воздухозаборник;30 – прокладки;31 – обводной патрубок системы охлаждения; 32 – термозащитный экран перепускной трубы;33 – уплотнительная шайба;34 – крышка головки блока цилиндров;35 – прокладка;36 – крышка подшипника распределительного вала;37 – распределительный вал, управляющий впускными клапанами;38 – распределительный вал, управляющий выпускными клапанами;39 – задняя пластина головки блока цилиндров;40 – прокладка трубы свечи зажигания;41 – левая головка блока цилиндров;42 – левая проушина двигателя;43 – прокладка головки блока цилиндров;44 – регулировочная прокладка;45 – толкатель клапана;46 – верхняя тарелка пружины;47 – пружина;48 – гнездо пружины;49 – направляющая втулка клапана;50 – клапан;51 – перепускная выхлопная труба;52 – прокладка;53 – термозащитный экран выпускного коллектора;54 – уплотнительное кольцо распредели тельного вала;55 – сухари;56 – уплотнительное кольцо;57 – упорное кольцо;58 – прокладки

Головка блока цилиндров

Неплоскостность:
– двигатель 3VZ-FE (1992 и 1993):
• головка блока цилиндров 0,099 мм
• впускной коллектор 0,099 мм
• выпускной коллектор 1,0 мм
– двигатель 1MZ-FE (1994):
• головка блока цилиндров 0,099 мм
• впускной коллектор 0,078 мм
• выпускной коллектор 0,49 мм

Распределительный вал

Зазор клапанов (на холодном двигателе):
– впускные клапана 0,127 – 0,23 мм
– выпускные клапана 0,28 – 0,38 мм
Диаметр шеек 26,940 – 26,960 мм
Зазор в подшипниках:
– номинальный 0,035 – 0,071 мм
– минимальный 0,099 мм
Высота кулачков:
– двигатель 3VZ-FE (1992 и 1993)
Распределительный вал, управляющий впускными клапанами:
– номинальная 42,158 – 42,260 мм
– предельно допустимая 42,000 мм
– двигатель 1MZ-FE (с 1994)
Распределительный вал, управляющий впускными клапанами:
– номинальная 42,110 – 42,210 мм
– предельно допустимая 42,050 мм
Распределительный вал, управляющий впускными клапанами:
– номинальная 41,960 – 42,050 мм
– предельно допустимая 41,810 мм
Осевой люфт распределительного вала
– номинальный
• двигатель 3VZ-FE(1992 и 1993) 0,033 – 0,078 мм
двигатель 1 MZ-FE (с 1994) 0,040 – 0,088 мм
– предельно допустимый 0,119 мм
Люфт шестерен распределительного вала:
– номинальный 0,02 – 0,20 мм
– предельно допустимый 0,47 мм
Расстояние между торцами пружины шестерни распределительного вала 22,5 – 22,9 мм

Толкатель клапана

Диаметр 30,96 – 30,97 мм
Диаметр канала толкателя 31,00 – 31,018 мм
Зазор толкателя в головке:
– номинальный 0,022 – 0,050 мм
– предельно допустимый 0,071 мм

Масляный насос

Зазор между внешним ротором и корпусом:
– номинальный 0,099 – 0,170 мм
– предельно допустимый 0,299 мм
Осевой люфт ротора:
– номинальный 0,030 – 0,088 мм
– предельно допустимый 0,149 мм

Моменты затягивания

Двигатель 3VZ-FE (1992 и 1993)
Гайки выпускного коллектора 40 Нм
Болт шкива коленчатого вала 250 Нм
Болты холостого шкива:
– номер 1 35 Нм
– номер 2 40 Нм
Механизм натяжения зубчатого ремня 28 Нм
Шкив распределительного вала 110 Нм
Болты крепления головки блока цилиндров:
– стадия 1 35 Нм
– стадия 2 довернуть на угол 90°
– стадия 3 довернуть на угол 90°
Болты масляного насоса:
– головка болта 12 мм 35 Нм
– головка болта 14 мм 40 Нм
Маховик / пластина привода 85 Нм
Двигатель 1MZ-FE (с 1994)
Выпускной коллектор 50 Нм
Болт шкива коленчатого вала 220 Нм
Болты холостого шкива:
– номер 1 35 Нм
– номер 2 45 Нм
Механизм натяжения зубчатого ремня 28 Нм
Шкив распределительного вала 130 Нм
Болты крепления головки блока цилиндров:
– стадия 1 55 Нм
– стадия 2 довернуть на угол 90°
Маховик / пластина привода 85 Нм

Что происходит в цилиндрах

Происходящее внутри цилиндра действо по научному называется рабочим циклом. Он состоит из фаз газораспределения.

Фаза газораспределения – момент начала открытия и конца закрытия клапанов в градусах поворота коленвала относительно мертвых точек: ВМТ и НМТ (соответственно, верхняя и нижняя мёртвые точки).

В течение одного рабочего цикла в цилиндре происходит одно воспламенение воздушно-топливной смеси. Интервал между воспламенениями в цилиндре прямым образом воздействует на равномерность работы двигателя. Чем меньше интервал воспламенения, тем равномернее работа двигателя.

И этот цикл напрямую связан с количеством цилиндров. Большее количество цилиндров – меньший интервал воспламенения.

Это интересно: Чистка дроссельной заслонки – мелочь или необходимость?

Что в итоге

С учетом приведенной выше информации становится понятно, что порядок работы цилиндров двигателя может отличаться. Это касается как рядных (например, 4-х или 6-и цилиндровых) моторов, так и V-образных двигателей или ДВС типа W12 и т.д.

При этом четко установленных правил и стандартов попросту не существует. Это значит, что на деле два однотипных двигателя в плане конструкции и количества цилиндров могут при этом иметь разный порядок работы цилиндров.

По этой причине необходимо заранее изучать особенности конкретного ДВС, в том числе и его порядок работы. В свою очередь, это позволит избежать определенных сложностей при диагностике, а также во время ремонта конкретного силового агрегата. 

</ul>

Многоцилиндровые двигатели представляют собой объединенную в одно целое конструкцию нескольких одноцилиндровых двигателей с одним общим коленчатым валом. За два оборота коленчатого вала будет столько рабочих ходов, сколько число цилиндров. В каждом цилиндре протекают одинаковые рабочие процессы, но не одновременно.

Для того чтобы представить работу многоцилиндрового двигателя, необходимо знать порядок работы двигателя, т. е. порядок чередования одноименных тактов по цилиндрам и интервалы одноименных тактов в различных цилиндрах.

Интервалы между одноименными тактами в различных цилиндрах определяют в углах поворота коленчатого вала, принимая за начало отсчета ВМТ. Наиболее равномерная работа многоцилиндрового двигателя имеет место при чередовании тактов расширения в цилиндрах через равные промежутки времени, т. е. через равные углы поворота коленчатого вала. У четырехтактного двигателя рабочий цикл совершается за два оборота коленчатого вала, или за 720°. Поэтому при однорядном расположении цилиндров угол поворота коленчатого вала составляет 720°//, где i — число цилиндров.

Для уменьшения нагрузки на коленчатый вал выбирают такой порядок работы, чтобы такты расширения не происходили подряд в смежных цилиндрах.

У четырехтактного четырехцилиндрового двигателя одноименные такты должны следовать через 180° угла поворота коленчатого вала. Следовательно, и шатунные шейки коленчатого вала должны быть расположены под углом 180°, т. е. лежать в одной плоскости (рис. 2.5, а). Шатунные шейки первого и четвертого цилиндров направлены в одну сторону относительно оси коленчатого вала, а шатунные шейки второго и третьего цилиндров — в противоположные. Это обеспечивает равномерное чередование рабочих ходов в цилиндрах двигателя. Последовательность чередования одноименных тактов в различных цилиндрах двигателя в течение его рабочего цикла называется порядком работы цилиндров двигателя. В данном случае возможны два порядка работы цилиндров: 1—2—4—3 и 1—3—4—2 (счет цилиндров ведется от радиатора). С точки зрения указанных выше требований оба порядка работы равноценны. Первый порядок работы цилиндров используется в автомобилях ГАЗ-3102, ГАЗ-2410, второй — в автомобилях марок «ВАЗ» и «Москвич».

Работа четырехтактного четырехцилиндрового двигателя (порядок работы цилиндров 1—3—4—2) показана в табл. 2.1.

4

Рис. 2.5. Кривошипно-шатунные механизмы четырехтактных рядных двигателей и схемы их работы: а — четырехцилиндрового; б — шестицилиндрового; 1—6 — номера цилиндров

Таблица 2.1. Работа рядного четырехцилиндрового двигателя

Оборот коленчатого вала

Угол поворота коленчатого

вала, °

Цилиндры

первый

второй

третий

четвертый

Первый

0-180

Рабочий ход

Выпуск

Сжатие

Впуск

180-360

Выпуск

Впуск

Рабочий ход

Сжатие

Второй

360-540

Впуск

Сжатие

Выпуск

Рабочий ход

540-720

Сжатие

Рабочий ход

Впуск

Выпуск

  • https://autolirika.ru/teoriya/poryadok-raboty-ryadnogo-4-cilindrovogo-dvigatelya.html
  • http://www.vk-sto.by/blog/porjadok_raboty_cilindrov_v_tipovykh_dvs_na_4_6_8_cilindrov/2019-12-21-91
  • http://krutimotor.ru/poryadok-raboty-tsilindrov-dvigatelya/
  • https://studref.com/314436/tehnika/rabota_chetyrehtsilindrovogo_dvigatelya
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *