Устройство, конструкция и разновидности синхронных машин
Содержание:
- Современный метод разгона
- Основные виды и их отличия
- Синхронный двигатель (СД)
- Принцип действия
- Области использования
- Разновидности движков
- Типы синхронных электродвигателей
- Принцип действия синхронного двигателя
- Схемы замещения
- Классификация электродвигателей
- Ротор — синхронная машина
- Способы возбуждения синхронных генераторов
Современный метод разгона
Эта установка будет стоить дороже, поэтому эксперты советуют применить «асинхронник», несмотря на то, что он морально устарел и отличается большим количеством недостатков. Но ведь именно и его функционирующая схема легла в основу синхронных движков и послужила для снижения размеров и цены установки.
Реостат используется для того, чтобы на индукторе замкнулись обмотки. Тогда «синхронник» превращается в «асинхронник». Запускать его легко — нужно передать электричество на якорные обмотки.
При разгоне синхронной скорости ротор может раскачиваться и успокаивать индукторные обмотки. После достижения нужной частоты оборотов, ток передается на роторные подмотки, а на движке активируется синхронный режим.
Но этот метод можно использовать , если в наличие есть движки с роторным обматыванием. При наличии постоянного магнита, ставится дополнительный моторчик для разгона.
Основные виды и их отличия
Основное отличительное свойство синхронников состоит в одинаковой частоте вращения ротора и магнитного поля, создаваемого обмоткой статора. В зависимости от расположения роторного механизма электроприводы производятся с размещением якоря внутри статора (стандартный тип электромотора) или с наружным конструктивным исполнение (моторы обращенного типа).
Относительно конструкции якоря синхронные машины подразделяются на две разновидности:
- явнополюсные – тихоходные моторы со скоростью до 1000 об/мин;
- неявнополюсные – высокоскоростные приводы с оборотами порядка 3000 об/мин.
Отличие двух типов приводов состоит в разной конфигурации полюсов, что влияет на технические характеристики электромоторов. Явнополюсный якорный блок имеет магнитопровод, закрепленный на вращающемся валу. К магнитопроводу закрепляются полюса с электрической обмоткой возбуждения и полюсными наконечниками. Количество пар полюсов может быть различным и зависит от требуемой мощности устройства.
Обмотка возбуждения создает постоянное магнитное поле. Для ее соединения с неподвижной электроцепью используют два металлических контактных кольца, установленных на якорном валу. К каждому из колец подсоединен один из выводов обмотки возбуждения. У наружной поверхности контактных колец располагаются неподвижные электрические щетки. Во время вращения вала элементы взаимодействуют между собой, в результате чего на щетки передается электропитание.
СДПМ с неявнополюсным принципом расположения роторной обмотки имеет цилиндрический магнитопровод (сердечник) с продольными пазами на его поверхности. Обмотка возбуждения распределена в пазах сердечника и при ее электропитании создается неизменное магнитное поле. Для соединения обмотки с неподвижной электроцепью также используются контактные кольца и электрические щетки.
Характеристики индуктивности при двух вариантах построения якорного механизма имеют свои отличия. Моторы с неявно выраженными полюсами характеризуются равными величинами индуктивности в продольном и поперечном направлении. У электроприводов с явно выраженными полюсами эти параметры отличаются.
Синхронный двигатель (СД)
Синхронный двигатель — агрегат с индивидуальной конструкцией ротора и индуктором с постоянными магнитами. Отличается улучшенными характеристиками мощности, момента и инерции. Имеет ряд особенностей конструкции и принципе действия.
Устройство
Конструктивно состоит из двух элементов: ротора (вращается) и статора (фиксированный механизм). Роторный узел находится во внутренней части статора, но бывают конструкции, когда ротор расположен поверх статора.
В состав ротора входят постоянные магниты, отличающиеся повышенной коэрцитивной силой.
Конструктивно СД делятся на два типа по полюсам:
- Неявно выраженные. Отличаются одинаковой индуктивностью по поперечной и продольной оси.
- Явно выраженные. Поперечная и продольная индуктивность имеют разные параметры.
Конструктивно роторы бывают разными устройством и по конструкции.
В частности, магниты бывают:
- Наружной установки.
- Встроенные.
Статор условно состоит из двух компонентов:
- Кожух.
- Сердечник с проводами.
Обмотка статорного механизма бывает двух видов:
- Распределенная. Ее отличие состоит в количестве пазов на полюс и фазу. Оно составляет от двух и более.
- Сосредоточенная. В ней количество пазов на полюс и фазу всего одно, а сами пазы распределяются равномерно по поверхности статорной части. Пара катушек, формирующих обмотку, могут соединяться в параллель или последовательно. Минус подобных обмоток состоит в невозможности влияния на линию ЭДС.
Форма электродвижущей силы электрического синхронного мотора бывает в виде:
- Трапеции. Характерна для устройств с явно выраженным полюсом.
- Синусоиды. Формируется за счет скоса наконечников на полюсах.
Если говорить в целом, синхронный мотор состоит из следующих элементов:
- узел с подшипниками;
- сердечник;
- втулка;
- магниты;
- якорь с обмоткой;
- втулка;
- «тарелка» из стали.
Принцип работы
Сначала к обмоткам возбуждения подводится постоянный ток. Он создает магнитное поле в роторной части. Статор устройства содержит обмотку для создания магнитного поля.
Как только на статорную обмотку подается ток переменной величины, по закону Ампера создается крутящий момент, и ротор начинает вращаться с частотой, равной частоте тока в статорном узле. При этом оба параметра идентичны, поэтому и двигатель носит название синхронный.
Роторная ЭДС формируется, благодаря независимому источнику питания, что позволяет менять обороты и не привязываться к мощности подключенных потребителей.
С учетом особенностей работы синхронный электродвигатель не может запуститься самостоятельно при подключении к трехфазному источнику тока.
Сфера применения
Электродвигатель синхронного типа имеет широкую сферу применения, благодаря постоянству частоты вращения.
Эта особенность расширяет сферу его применения:
- энергетика: источники реактивной мощности для поддержания напряжения, сохранение устойчивости сети при аварийных просадках;
- машиностроение, к примеру, при изготовлении гильотинных ножниц с большими ударными нагрузками;
- прочие направления — вращение мощных компрессоров или вентиляторов, генераторы на электростанциях, обеспечение устойчивой работы насосного оборудования и т. д.
Как подключить электродвигатель 380В на 220В
Преимущества и недостатки
После рассмотрения конструктивных особенностей, принципа работы и сферы применения СД подведем итог по положительным / отрицательным особенностям.
Плюсы:
- Возможность работы при косинусе Фи равном единице (отношение полезной мощности к полной). Эта особенность улучшает косинус Фи сети. При работе с опережающим током синхронные машины генерируют реактивную мощность, которая поступает к асинхронным моторам и уменьшает потребление «реактива» от генераторов электрических станций.
- Высокий КПД, достигающий 97-98%.
- Повышенная надежность, объясняемая большим воздушным зазором.
- Доступность регулирования перегрузочных характеристик, благодаря изменению тока, подаваемого в ротор.
- Низкая чувствительность к изменению напряжения в сети.
Минусы:
- Более сложная конструкция и, соответственно, высокая стоимость изготовления.
- Трудности с пуском, ведь для этого нужные специальные устройства: возбудитель, выпрямитель.
- Потребность в источнике постоянного тока.
- Применение только для механизмов, которым не нужно менять частоту вращения.
Пример СД2-85/37-6У3, 500кВт, 1000об/мин, 6000В.
СД2-85/37-6У3, 500кВт, 1000об/мин, 6000В
Принцип действия
Принцип действия электрической машины переменного тока: 1 — статор, 2 — ротор.
У однофазного двигателя отсутствует пусковой момент. При подключении обмотки якоря к сети переменного тока, ротор неподвижен, в обмотку возбуждения поступает постоянный ток, за время одного изменения напряжения, два раза происходит смена направления электромагнитного момента. Значение среднего момента равняется нулю. Ротор разгоняется посредством внешнего момента до вращающейся частоты, которая приближается к синхронности.
Из-за высокого значения коэффициента мощности обеспечивается снижение потребления электричества, уменьшаются потери. В сравнении с асинхронным механизмом с такой же мощностью, синхронный двигатель имеет КПД выше. Так как крутящийся момент аналогичен напряжению сети. Даже снижение напряжения не влияет на нагрузочную способность. Что свидетельствует о надежности механизма.
Тип подключения делится на однофазный и трехфазный. Синхронные агрегаты чаще бывают трехфазными. При положении проводников трехфазного двигателя в определенной геометрической позиции появляется электромагнитное поле, которое вращается с одновременной скоростью. При имении магнита во вращающемся поле, они замыкают, крутятся параллельно. Двигатель можно назвать нерегулируемым, так как его скорость постоянная.
Области использования
Следует отметить, что синхронные электродвигатели обходятся намного дороже асинхронных. Кроме того, они нуждаются в дополнительном источнике постоянного электротока побуждения. Это уменьшает область использования таких типов двигателей.
В основном их можно встретить в сферах с большими мощностями (измерение идет в сотнях киловатт, мегаватт). При этом, запуск и прерывание работы случаются довольно редко, то есть механизмы работают продолжительное время, 24/7.
Это можно объяснить тем, что электродвигатели постоянного тока работают с коэффициентом мощности, значение которого стремится к 1.
Они способны отдавать реактивную мощность в сеть, и на выходе получать более рациональное потребление электричества, что очень актуально для современных производств.
Разновидности движков
Конструкция ротора и принцип действия синхронной машины-двигателя напрямую связана
- с мощностью, которую надо создать на его вале,
- необходимой для этого величиной магнитного потока,
- параметрами напряжения питания статора.
Устройство синхронных машин небольшой мощности получается более простым при изготовлении магнитного ротора из специальных материалов. Так же применяется явно полюсный ротор с малой начальной намагниченностью. В результате получаются конструкции с постоянными магнитами, а также гистерезисные и синхронные реактивные двигатели. На статор этих движков подается переменное напряжение. Число фаз и частота соответствуют конструкции двигателя. В однофазных движках может быть использован конденсатор, через который подключается одна из двух обмоток статора. Но может быть применена схема из показанных далее вариантов.
Гистерезисный движок похож на синхронный реактивный двигатель. Эти синхронные машины переменного тока характеризует одинаковый принцип действия. Его определяет магнитное поле статора, намагничивающее ротор. Гистерезисный движок и синхронный реактивный электродвигатель своей надежностью не уступают асинхронным двигателям. Однако роторы этих синхронных машин всегда бывают существенно дороже роторов асинхронных движков.
С целью получения максимального силового взаимодействия и больших по величине крутящих моментов в роторе используется принцип электромагнита. При этом его называют индуктором с обмоткой возбуждения. Для ее питания применяется постоянное напряжение, которое подается на щетки. Они расположены на статоре и скользят по кольцам, установленным на роторе. Через эту пару скользящих контактов течет постоянный ток возбуждения.
Такое классическое устройство синхронной машины существует и в наши дни, но преимущественно в наиболее мощных моделях. Для запуска движков обычно используются конструктивные решения со скольжением магнитных полей, характерные для асинхронных двигателей. При наличии индуктора для этого достаточно накоротко замкнуть щетки. В синхронных электрических машинах движки без щеток в роторе делаются с пусковыми обмотками типа беличьей клетки. Могут быть иные конструктивные решения для асинхронного старта.
Важной особенностью рассматриваемых двигателей, питаемых переменным напряжением, является их польза при работе без механической нагрузки или при ее небольшой величине. В таком режиме работы при небольшом возбуждении реактивная мощность из сети потребляется, а при значительном — отдается в сеть
Тем самым увеличивается эффективность электроснабжения. Для этой цели делаются специальные движки, называемые синхронными компенсаторами.
Развитие полупроводниковых приборов позволило создавать вращающееся магнитное поле путем преобразования постоянного напряжения. Очевидно то, что такое техническое решение расширило возможности управления электрическими двигателями. Регулирование частоты питающего напряжения и бесконтактный индуктор — это главные достижения полупроводниковых моделей. Но при этом существуют ограничения, определяемые возможностями электронных ключей.
По этой причине наиболее мощные из всех существующих движков по-прежнему являются трехфазными индукторными конструкциями со щетками и кольцами.
Типы синхронных электродвигателей
Cинхронный электродвигатель с обмоткой возбуждения
Синхронный электродвигатель с обмоткой возбуждения имеет явнополюсный ротор с электромагнитным возбуждением. Для создания постоянного магнитного поля ротора требуется источник постоянного тока. Обмотки ротора двигателя соединены с контактными кольцами к которым через щетки подводится постоянный ток. Преимуществом данных двигателей является отсутствие дорогостоящих магнитов, недостатком — наличие щеток и необходимость питания обмоток ротора.
Cинхронный электродвигатель с постоянными магнитами
Данный двигатель имеет ротор с постоянными магнитами. В отличии от коллекторного двигателя постоянного тока функции коллектора и щеток выполняют полупроводниковые ключи. Имеет такие же преимущества, что и коллекторный двигатель постоянного тока, при этом не требует текущего ремонта (бесщеточный) в процессе эксплуатации. Такой электродвигатель требует сложной системы управления. Бесщеточные синхронные электродвигатели с постоянными магнитами обладают рядом преимуществ над другими двигателями, обладая лучшими показателями: мощность/объем, КПД, момент/инерция и др.
Синхронный реактивный электродвигатель
Синхронный электрический двигатель с ротором из ферромагнитного материала. Принцип действия синхронного реактивного электродвигателя основан на свойствах ферромагнитных тел ориентироваться так, чтобы сцепленный с ним магнитный поток оказался максимальным. Основным преимуществом электродвигателя является: простота и низкая цена изготовления. При одинаковых размерах, реактивный электродвигатель развивает больший момент, чем асинхронный, но имеет более низкий коэффициент мощности. Данный электродвигатель для работы требует систему управления.
Гистерезисный электродвигатель
Синхронный электродвигатель с неявнополюсным гистерезисным ротором. Вращающий момент этого электродвигателя создается за счет магнитного гистерезиса материала ротора. Достоинствами гистерезисных двигателей являются простота устройства, надежность в эксплуатации, отсутствие пусковых приспособлений, плавность втягивания в синхронизм, практически неизменный ток при пуске и работе. К недостаткам можно отнести относительно высокую стоимость материала ротора.
Шаговый электродвигатель
Синхронный бесщеточный электродвигатель, который без устройств обратной связи преобразует сигнал управления в угловое перемещение ротора с фиксацией его в заданном положении. Главное преимущество шаговых электродвигателей — точность, а также возможность осуществлять позиционирование и регулировать скорость без датчика обратной связи.
Принцип действия синхронного двигателя
Прежде чем рассматривать принцип действия синхронного двигателя, необходимо помнить, что это электрическая машина, работающая на переменном токе, у которой ротор вращается с частотой, которая равна частоте вращения магнитного поля в воздушной прослойке.
Синхронный двигатель состоит из основных частей – якоря и индуктора. Обычно, его исполнение сделано таким образом, что якорь расположен на статоре, а индуктор – на роторе, отделенном воздушной прослойкой. Данные агрегаты обладают высоким коэффициентом мощности. Существенным плюсом является возможность их использования в сетях с любым напряжением.
Схемы замещения
В СД при вращательном движении роторного узла с постоянным магнитным полем в цепи статорного устройства индуцируется электродвижущая сила (ЭДС). Она уравновешивает напряжение источника, подключенного к обмотке индукторного колеса. Поэтому ее называют противоЭДС. Схема замещения синхронного двигателя отражает создание противоЭДС в обмотке индуктора.
Электрический ток статора СД также формирует собственное магнитное поле, которое индуцирует ЭДС самоиндукции. Это учитывается в схеме замещения индуктивным элементом с индуктивным сопротивлением X1. Данная схема имеет вид:
Схема замещения позволяет составить уравнение электрического состояния СД и анализировать их характеристики и режимы работы.
Классификация электродвигателей
- Двигатель постоянного тока постоянным током ; Коллекторные двигатели постоянного тока. Разновидности: С возбуждением постоянными магнитами;
- С параллельным соединением обмоток возбуждения и якоря;
- С последовательным соединением обмоток возбуждения и якоря;
- Со смешанным соединением обмоток возбуждения и якоря;
Бесколлекторные двигатели постоянного тока (вентильные двигатели) с электронным переключателем тока;
- Двигатель переменного тока — электрический двигатель, питание которого осуществляется переменным током , имеет две разновидности: Синхронный электродвигатель — электродвигатель переменного тока, ротор которого вращается синхронно с магнитным полем питающего напряжения;
- Асинхронный электродвигатель — электродвигатель переменного тока, в котором частота вращения ротора отличается от частоты вращающего магнитного поля, создаваемого питающим напряжением.
- Однофазные — запускаются вручную, или имеют пусковую обмотку, или имеют фазосдвигающую цепь
- Многофазные
Шаговые двигатели — Электродвигатели, которые имеют конечное число положений ротора. Заданное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение осуществляется путём снятия напряжения питания с одних обмоток и передачи его на другие.
Вентильные двигатели — Электродвигатели, выполненные в виде замкнутой системы с использованием датчика положения ротора (ДПР), системы управления (преобразователя координат) и силового полупроводникового преобразователя (инвертора).
Универсальный коллекторный двигатель (УКД) — коллекторный электродвигатель, который может работать и на постоянном токе и на переменном токе.
Из-за связи с низкой частотой сети (50 Герц) асинхронные и синхронные двигатели имеют больший вес и размеры, чем коллекторный двигатель постоянного тока и универсальный коллекторный двигатель той же мощности. При применении выпрямителя и инвертора с частотой значительно большей 50 Гц вес и размеры асинхронных и синхронных двигателей приближаются к весу и размерам коллекторного двигателя постоянного тока и универсального коллекторного двигателя той же мощности.
Синхронный двигатель с датчиком положения ротора и инвертором является электронным аналогом коллекторного двигателя постоянного тока.
Ротор — синхронная машина
Модификация конструктивного исполнения электрических машин.| Индукторная машина с двумя роторами. |
Роторы синхронных машин, рассчитанных на частоту вращения 1500 и 3000 об / мин и выше, обычно выполняются неявнополюсными. При этом обмотка возбуждения укладывается в профрезерованные в роторе пазы.
Роторы синхронных машин бывают двух типов: явнополюсные и неявнополюсные.
Ротор синхронной машины по существу представляет электромагнит — неявнополюсный ( рис. 16 — 1) или явнополюсный ( рис. 16 — 2), обмотка которого питается постоянным током возбуждения. Последний поступает в ротор через контактные кольца и щетки от внешнего источника постоянного тока — возбудителя.
Ротор синхронной машины представляет электромагнит постоянного тока. Его обмотка питается постоянным током от постороннего источника. Она служит для создания постоянного магнитного поля ротора, и называют ее обмоткой возбуждения. Соединение обмотки ротора с источником постоянного тока осуществляется с помощью двух контактных колец на валу и неподвижных щеток. В качестве источника постоянного тока для питания обмотки возбуждения ротора применяется отдельный генератор постоянного или переменного тока. Последний подключается к обмотке возбуждения через управляемые выпрямители. Генератор, питающий обмотку возбуждения, называется возбудителем. Обычно он монтируется на одном валу с ротором генератора. Мощность, требуемая для питания обмотки возбуждения, невелика, соответственно мощность возбудителя составляет примерно 0 3 — 5 % номинальной мощности синхронной машины. Возможно также питание обмотки возбуждения от сети переменного тока, подключенной к статору, через выпрямители.
Ротор синхронной машины возбуждается постоянным током. Так как его полюса неподвижны по отношению к его обмотке, ротор должен вращаться синхронно с потоком якоря. Только при синхронной скорости полюса ротора неподвижны относительно поля якоря. При любой другой скорости вследствие относительного перемещения полей возбуждения и якоря ротор будет то ускоряться, то замедляться и средний электромагнитный момент будет равен нулю. Если нет среднего момента, машина не может ни поглощать ( как генератор), ни развивать ( как двигатель) механическую мощность.
Ротор невыраженными сами. |
Ротор синхронной машины, как было указано, служит для создания основного магнитного потока. По конструкции различают роторы с явновыражен-ными и неявновыраженными полюсами.
Ротор синхронной машины выполняется или с явно выраженными полюсами, или в виде цилиндрического ротора с неяано выраженными полюсами. Первый тип ротора применяется в тихоходных машинах с большим числом полюсов. Второй т п ротора используется в быстроходных машинах.
Ротор синхронной машины выполняется или с явно выраженными полюсами, или в виде цилиндрического ротора с неявно выраженными полюсами. Первый тип ротора применяется в тихоходных машинах с большим числом полюсов. Второй тип ротора используется в быстроходных машинах.
Ротор синхронной машины представляет собой электромагнит с сосредоточенной ( явнополюсный ротор) или распределенной ( неявнопо-люсный ротор) обмоткой, называемой обмоткой возбуждения, к которой через контактные кольца и щетки подведен постоянный ток возбуждения. Число пар полюсов ротора равно числу пар полюсов обмотки статора. Ротор и его магнитное поле с потоком Ф вращаются с частотой П По, равной частоте вращения магнитного поля статора.
Ротор синхронной машины имеет обмотку возбуждения, питаемую через два контактных кольца и щетки постоянным током от постороннего источника.
Роторы синхронных машин выполняются явнополюсными и-неявно Еолюсными.
Советуем изучить — Мощность трехфазной цепи при несимметричной нагрузке
Ротор синхронной машины имеет обмотку возбуждения, питаемую через два контактных кольца и щетки постоянным током от постороннего источника.
Ротор со стержневой обмоткой. |
Способы возбуждения синхронных генераторов
Самым распространенным способом создания основного магнитного потока синхронных генераторов является электромагнитное возбуждение, состоящее в том, что на полюсах ротора располагают обмотку возбуждения, при прохождении по которой постоянного тока, возникает МДС, создающая в генераторе магнитное поле. До последнего времени для питания обмотки возбуждения применялись преимущественно специальные генераторы постоянного тока независимого возбуждения, называемые возбудителями В (рис. 1.3, а). Обмотка возбуждения (ОВ ) получает питание от другого генератора (параллельного возбуждения), называемого подвозбудителем (ПВ ). Ротор синхронного генератора, возбудителя и подвозбудителя располагаются на общем валу и вращаются одновременно. При этом ток в обмотку возбуждения синхронного генератора поступает через контактные кольца и щётки. Для регулирования тока возбуждения применяют регулировочные реостаты, включаемые в цепи возбуждения возбудителяr 1 и подвозбудителяr 2 . В синхронных генераторах средней и большой мощности процесс регулирования тока возбуждения автоматизируют.
В синхронных генераторах получила применение также бесконтактная система электромагнитного возбуждения, при которой синхронный генератор не имеет контактных колец на роторе. В качестве возбудителя в этом случае применяют обращенный синхронный генератор переменного тока В
(рис. 1.3, б). Трехфазная обмотка2 возбудителя, в которой наводится переменная ЭДС, расположена на роторе и вращается вместе с обмоткой возбуждения синхронного генератора и их электрическое соединение осуществляется через вращающийся выпрямитель3 непосредственно, без контактных колец и щёток. Питание постоянным током обмотки возбуждения1 возбудителя В осуществляется от подвозбудителяПВ – генератора постоянного тока. Отсутствие скользящих контактов в цепи возбуждения синхронного генератора позволяет повысить её эксплуатационную надёжность и увеличить КПД.
В синхронных генераторах, в этом числе гидрогенераторах, получил распространение принцип самовозбуждения (рис. 1.4, а), когда энергия переменного тока, необходимая для возбуждения, отбирается от обмотки статора синхронного генератора и через понижающий трансформатор и выпрямительный полупроводниковый преобразователь ПП
преобразуется в энергию постоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счёт остаточного магнетизма машины.
На рис. 1.4, б представлена структурная схема автоматической системы самовозбуждения синхронного генератора (СГ
) с выпрямительным трансформатором (ВТ ) и тиристорным преобразователем (ТП ), через которые электроэнергия переменного тока из цепи статораСГ после преобразования в постоянный ток подаётся в обмотку возбуждения. Управление тиристорным преобразователем осуществляется посредством автоматического регулятора возбужденияАРВ , на вход которого поступают сигналы напряжения на входеСГ (через трансформатор напряженияТН ) и тока нагрузкиСГ (от трансформатора токаТТ ). Схема содержит блок защиты (БЗ ), обеспечивающий защиту обмотки возбуждения (ОВ ) от перенапряжения и токовой перегрузки.
Мощность, затрачиваемая на возбуждение, обычно составляет от 0,2 до 5 % полезной мощности (меньшее значение относится к генераторам большой мощности). В генераторах малой мощности находит применение принцип возбуждения постоянными магнитами, расположенными на роторе машины. Такой способ возбуждения даёт возможность избавить генератор от обмотки возбуждения. В результате конструкция генератора существенно упрощается, становится более экономичной и надёжной. Однако, из-за высокой стоимости материалов для изготовления постоянных магнитов с большим запасом магнитной энергии и сложности их обработки применение возбуждения постоянными магнитами ограничено машинами мощностью не более нескольких киловатт.
Синхронные генераторы
составляют основу электроэнергетики, так как практически вся электроэнергия во всём мире вырабатывается посредством синхронных турбо- или гидрогенераторов.
Так же синхронные генераторы находят широкое применение в составе стационарных и передвижных электроустановок или станций в комплекте с дизельными и бензиновыми двигателями.