Что такое дифференциал и в чем его секрет?

Содержание:

Конический симметричный дифференциал

Рис. 3. Типы дифференциалов, классифицированных по различным признакам

Конический симметричный дифференциал

Назначение.

Дифференциал служит для распределения крутящего момента между ведущими колесами и позволяет правому и левому колесам при поворотах автомобиля и при его движении на криволинейных участках дороги вращаться с разной частотой. Межколесный дифференциал бывает симметричным или несимметричным, соответственно распределяющим крутящий момент между полуосями поровну или не поровну. На автомобилях получили применение межколесные конические симметричные дифференциалы, межосевые конические и кулачковые дифференциалы повышенного трения.

Дифференциал— это механизм трансмиссии, распределя­ющий подводимый к нему вращающий момент между полуосями ведущих колес и позволяющий им вращаться с разными скоростя­ми. Он состоит из корпуса 1

(рис. 3а), крестовины 3, малых конических шестерен-сателлитов 4 и полуосевых конических ше­стерен 2. На цилиндрические пальцы крестовины свободно поса­жены сателлиты, которые вместе с крестовиной закреплены в кор­пусе (коробке) дифференциала и находятся в постоянном зацеп­лении с шестернями правой и левой полуосей.

Когда автомобиль движется прямо и по ровной дороге, оба ве­дущих колеса испытывают одинаковое сопротивление качению.

При этом ведомая шестерня 5 (рис. 36) главной передачи вра­щает вокруг своей оси корпус дифференциала с крестовиной и сателлитами 4. Сателлиты, находясь в зацеплении с правой и левой полуосевыми шестернями, зубьями приводят их во вращение с одинаковой частотой. В этом случае сателлиты вокруг собственной оси не вращаются.

При повороте (рис. 3в) колеса автомобиля проходят разную длину пути. Вращение внутреннего колеса замедляется, а наруж­ного — убыстряется. Сателлиты, вращаясь вместе с корпусом, сво­ими зубьями упираются в зубья полуосевой шестерни, замедлив­шей вращение, и сообщают дополнительную скорость другой по­луосевой шестерне, в результате чего наружное колесо, проходя больший путь, вращается быстрее.

Рис. 3. Дифференциал:

а—устройство; б — схема работы при прямолинейном движении; в — схема

работы при повороте; 1 — корпус (чашка); 2 — полуосевые шестерни, 3 — кресто­вина;

4 — сателлит; 5 — ведомая шестерня главной передачи; 6 — ведущий вал главной передачи; 7 — правая полуось; 8 — левая полуось; 9 — наружное ведущее

колесо

Рис.4. Конический симметричный дифференциал

Кулачковый дифференциал повышенного трения (рис.5) благодаря дополнительным силам трения (в результате самоблокировки) передает больший крутящий момент на то колесо автомобиля, которое вращается медленнее, что уменьшает возможность его пробуксовывания и повышает устойчивость автомобиля против бокового заноса.

Картер кулачкового механизма состоит из двух половин, со­единенных болтами вместе с ведомым зубчатым колесом 3

и опирающихся на конические роликовые подшипники. Правой половиной дифференциала является его чашка 5, а левой — сепаратор2 . В сепараторе2 расположены два ряда радиальных отверстий (по 12 отверстий в каждом ряду), в которых размешены сухари 4$ установленные между внутренней 1 и наружной 4 звездочками, при помощи шлицов соединенными с полуосями. Внешняя по­верхность внутренней звездочки1 по окружности имеет два ряда кулачков (по шесть кулачков в каждом ряду), а внутренняя поверхность наружной звездочки 4 имеет один ряд кулачков. Крутящий момент от ведомого колеса3 передается сепаратору2, а от него через сухари 6 — на кулачки звездочек и затем на полуоси.

Рис. 5 Кулачковый дифференциал повышенного трения автомобилей

diff

Но это все-таки не боевой автомобиль, а семейный универсал

Поэтому уделим внимание и менее динамичным и азартным, но более востребованным в повседневной жизни моментам. Например, дает ли преимущество блокировка при троганье в горку? Двенадцатипроцентный подъем (под колесами — укатанный снег) покорился автомобилю и в том, и в другом исполнениях

При этом на машине со свободным дифференциалом приходилось трогаться очень осторожно, по крупицам отмеряя тягу. Вполне естественно, что более крутой, 16-процентный уклон «Калина» преодолела, только вооружившись самоблокирующимся дифференциалом

Принудительно блокируемые дифференциалы

Ручная блокировка дифференциала

Дифференциал с принудительной блокировкой

По команде из кабины шестерни дифференциала блокируются, и колёса вращаются синхронно. Таким образом, дифференциал стоит блокировать перед преодолением сложных участков пути (вязкий грунт, препятствия), и затем разблокировать после выезда на обычную дорогу. Применяется в вездеходах и внедорожниках.

При езде на таких автомобилях чаще всего не рекомендуется блокировать дифференциал, когда автомобиль движется, желательно включать блокировку на стоянке. Также нужно знать, что крутящий момент, создаваемый мотором, настолько велик, что может сломать механизм блокировки или полуось. Обычно производители автомобиля отдельно указывают рекомендованную максимальную скорость движения при заблокированном дифференциале, в случае её превышения возможны поломки трансмиссии. Включенная блокировка, особенно в переднем мосту, отрицательно влияет на управляемость.

Электронное управление дифференциалом

На внедорожниках, снабжённых антипробуксовочной системой (TRC и другие), если одно из колёс буксует, то оно подтормаживается рабочим тормозом.

Похожее решение было применено в «Формуле-1» в 1998 году. В болиде McLaren MP4/13 команды «Макларен» при повороте гонщик мог притормозить внутреннее колесо рабочим тормозом. Эту систему быстро запретили, однако в Формуле-1 прижилась конструкция фрикционного дифференциала, в котором фрикцион дополнительно управляется компьютером. В 2002 году технический регламент был ужесточён; с того же (2002) года и по сей день в Формуле-1 разрешены только дифференциалы простейшего типа.

Преимущество электронного управления в том, что повышается тяга в повороте, и степень блокировки можно настроить в зависимости от предпочтений водителя. На прямой совсем не теряется мощность двигателя. Недостаток в том, что датчики и исполнительные механизмы обладают некоторой инерцией, и такой дифференциал нечувствителен к быстро меняющимся дорожным условиям.

DPS

Основная статья: DPS

Dual Pump System — система с двумя насосами, автоматически подключающая вторую ось, когда не хватает одной. Применяется в системах полного привода Honda. Достоинства: работает автоматически, на хорошей дороге экономит бензин. Недостатки: ограниченная проходимость, сложность, ограничения на буксировку.

Устройство и принцип работы

С технической точки зрения дифференциал устроен достаточно просто, но при этом он способен выдерживать огромные нагрузки. Что внутри этого узла и как он работает?


Устройство типового дифференциала

По своему типу это планетарный редуктор со всеми необходимыми элементами.

  1. Шестерня главной передачи – подает вращение от КПП на дифференциал.
  2. Ведомая шестерня связана и с главной передачей, и с шестернями-сателлитами.
  3. Сателлиты – закреплены в «чашке» ведомой шестерни, так что вращаются вместе с ней.
  4. Шестерни полуосей – соединены с сателлитами и не контактируют с остальными элементами дифференциала.

Детально показано на видео-ролике, ниже.

  1. От КПП выходит вал главной передачи, от которого вращение передается на ведомую шестерню.
  2. Ведомая шестерня и скрепленная с ней «чашка» (водило) принимают крутящий момент.
  3. Вращаясь, ведомая шестерня и чашка приводят в движение шестерни-сателлиты.
  4. Сателлиты, в свою очередь, передают вращение на полуоси.
  5. При равной нагрузке на полуоси (когда автомобиль движется по прямой дороге с равномерным покрытием) сателлиты не вращаются. Работает только ведомая шестерня, в чашке которой закреплены сателлиты, и они описывают обороты вместе с ней, при этом не совершая вращения вокруг своей оси. Таким образом, момент вращения распределяется на полуоси поровну, 50:50.
  6. Когда автомобиль поворачивает и одно из колес должно замедлить, а второе – ускорить движение, сателлиты приходят в движение. За счет конической зубчатой передачи они, вращаясь, замедляют одну полуось и ускоряют вторую. Другими словами, перераспределяют момент вращения в нужной пропорции, вплоть до 0:100 без потери усилия.
  7. При пробуксовке одного колеса включается механизм блокировки, без которого на то колесо, которое вращается быстрее, ушел бы весь момент вращения. Без блокировки автомобиль останавливается при попадании хотя бы одного колеса на скользкую поверхность.

При прямолинейном движении

Когда автомобиль движется прямолинейно по гладкой поверхности с твёрдым сухим покрытием, обе полуоси вращаются с одинаковой угловой скоростью. Полуосевые шестерни находятся в покое одна относительно другой, весь дифференциал сильно похож на монолитную конструкцию.

Сателлиты, будучи связанными через свои зубья с обеими полуосевыми шестернями, относительно своих осей не вращаются. Момент распределяется поровну между осями, если дифференциал симметричный и свободный, то есть лишён блокировок. Впрочем, с блокировками в таком идеальном случае будет то же самое.

При повороте

В повороте, а это обычный режим работы дифференциала, поскольку идеальных прямых в природе не существует, одно из колёс всегда будет вращаться быстрее. Сателлиты придут в движение относительно своих осей, но связь между полуосевыми шестернями и корпусом не утратят. То есть момент продолжит передаваться от корпуса к колёсам, причём всё в том же соотношении 50/50.

Это очень любопытно рассмотреть с точки зрения мощности. Момент одинаков, а скорость у внешнего от поворота колеса больше, то есть и мощность на него передаётся пропорционально большая.

И это неудивительно, так как чем больше скорость, тем выше потери, которые компенсируются добавкой мощности. При этом ни малейших помех вращению колёс с разной скоростью создаваться не будет, в отличие от жёсткой связи.

При пробуксовке

Гораздо менее приятно дела обстоят в том случае, когда одно из колёс попало на относительно скользкий участок дороги и сорвалось в пробуксовку при разгоне. Сцепления с дорогой нет, а значит момент сопротивления покрытия резко падает. Но этот момент всегда равен тяговому, это закон физики. Значит и тяговый момент упадёт.

Свободный симметричный дифференциал делит тягу пополам между колёсами. Всегда 50/50. То есть при падении момента на одном до нуля, на втором он обнулится автоматически. Автомобиль начнёт терять скорость, а если речь идёт о трогании с места на льду или жидкой грязи, то он просто там и останется, не сумев выехать из засады.

В этом главный недостаток свободного дифференциала. Он может передать усилие только то, которое способно переварить колесо, находящееся в худших условиях. Даже если второе будет на сухом чистом асфальте, автомобиль никуда не поедет. Вся энергия уйдет на быстрое и бесполезное вращение буксующего колеса.

Предназначение дифференциала автомобилей:

— позволяет ведущим колёсам вращаться с разными угловыми скоростями;

— неразрывно передаёт крутящий момент от двигателя на ведущие колёса.

Основная проблема, появившаяся на заре автомобильной эры, была решена с помощью применения дифференциала, теперь повороты машине можно проходить более безопасно и без пробуксовки колес, а отсюда соответственно и без чрезмерной нагрузки на трансмиссию, на шины и на сами подшипники колес. Но зато появилось другое неудобство.

Простейший дифференциал имеет одну яркую «особенность», благодаря которой он категорически не подходит для сложных, экстремальных дорожных ситуаций.

Когда у ведущих колес 100% сцепление с дорогой, то все будет идти хорошо и дифференциал будет исполнять свою функцию просто идеально, но стоит одному из колес попасть в ситуацию когда оно (шина) потеряет сцепление с дорогой, или попадет на другой тип грунта или на лед, то начнет вращаться именно то колесо, которое потеряло сцепление, а противоположенное стоящее на более цепком грунте просто останется неподвижным.

Не вдаваясь в сами нюансы работы механизма можно просто констатировать факт, что дифференциал не меняет свой крутящий момент, он просто перераспределяет мощность между колесами и такая мощность будет всегда больше на том именно колесе, которое вращается быстрее. При пробуксовке колеса сопротивление его и крутящего момента будет минимальным, а значит чрезвычайно малым будет и крутящий момент передающийся с самого двигателя непосредственно на колесо, а значит и на противоположенном колесе этот крутящий момент будет ему соответствовать, то есть он будет минимальным.

Особенно видны и очень заметны недостатки этого классического дифференциала на спортивных автомобилях с большой мощностью, а также и на полноприводных машинах, которые рассчитаны на езду по бездорожью.

В этой связи инженеры и автопроизводители большинства автокомпаний начали искать новое решение с этой проблемой. Появилось большое количество (различных видов устройств) дифференциалов. Основные виды таковых нам и хотелось бы освятить в данной статье. А также нам хотелось бы рассказать своим читателям и об основных преимуществах и конкретных недостатках тех или иных видов этих устройств, и еще, на каких современных автомобилях можно сегодня встретить тот или иной тип дифференциалов.

Применение дифференциалов в зависимости от их видов

Устройства используют для передачи крутящего момента ведущим колесам и ведущим мостам автомобиля .

Грузовики и легковые автомобили всех типов приводов имеют межколесный дифференциал, передающий вращение колесам. Межосевой дифференциал, распределяющий крутящий момент между мостами, применяют исключительно в полноприводных машинах.

По типу применяемой зубчатой передачи различают следующие виды механизмов:

  1. конический;
  2. цилиндрический;
  3. червячный.

По количеству зубьев шестерен полуосей:

  1. симметричный;
  2. несимметричный.

Благодаря его свойству пропорционально распределять крутящий момент несимметричный дифференциал с цилиндрической передачей устанавливают между мостами полноприводных автомобилей.

Заднеприводные и переднеприводные автомобили оснащают коническим симметричным дифференциалом.

Червячная передача, являясь самой универсальной, используется во всех типах устройств со всеми приводами.

Подробнее об устройстве

Запчасти на volkswagen sharan

Гидрокомпенсатор (гидротолкатель), толкатель клапанов 2.0 TDI CFFA Конструктивной основой дифференциала является планетарный редуктор. Напоминаем, что редуктор по своей сути является парой сцепленных шестерен – малого и большого диаметра с разным количеством зубьев. Когда быстро вращающаяся малая шестерня сцеплена с большей, последняя вращается с ощутимо меньшей скоростью. Например, если в первой шестерне 50 зубьев, а во второй целых 100, то вторая шестерня вращается вдвое медленнее первой. При вращении большая шестерня совершает один оборот тогда, когда первая совершает два оборота.

Планетарный редуктор, иначе называемый дифференциальным редуктором, выполняют лишь одну задачу – преобразования и передачи крутящего момента. В отличие об более привычной схемы «шестерня-шестерня», в планетарных редукторах передача основана на взаимодействии трех основных и еще нескольких вспомогательных элементов. Уникальность планетарных редукторов в том, что они позволяют выбирать между несколькими передаточными отношениями и имеют две степени свободы. Такая «вариативность» планетарных передач позволила использовать их в автомобильных редукторах.

Итак, мы разобрались с тем, что же представляет собой планетарный редуктор. Дифференциал использует достоинства такого механизма в полной мере. К основным элементам автомобильного дифференциала принято относить:

  1. Полуосевую (солнечная) шестерню;
  2. Чашку;
  3. Ведомую шестерню и ведущаю шестерню главной передачи;
  4. Сателлиты.

Чашку автомобильного дифференциала правильнее называть корпусом. Крутящий момент от силового агрегата через промежуточные узлы (в т.ч. через главную передачу) принимается корпусом. Далее момент передается полуосевым шестерням через сателлиты. Именно сателлиты играют роль планетарных шестерней – они передают момент и обеспечивают нормальное соединение корпуса с полуосевыми шестернями. Обычно сателлитов два (легковой транспорт) или четыре (грузовой, внедорожный и т.п.). Как вы уже догадались, полуосевые шестерни отвечают за передачу крутящего момента ведущим колесам через полуоси.

Многие автолюбители задаются вопросом: чем же отличается редуктор от дифференциала. Если ответить просто, редуктор является всего лишь зубчатой парой, которая изменяет (уменьшает) крутящий момент. Дифференциал является целым набором шестерней, которые, грубо говоря, делят крутящий момент в определенном соотношении двум потребителям. При этом понятие «редуктор заднего моста» охватывает как редуктор, так и дифференциал – оба этих механизма могут находятся в одном корпусе, однако они выполняют свои специфические задачи.

Устройство и принцип работы

С технической точки зрения дифференциал устроен достаточно просто, но при этом он способен выдерживать огромные нагрузки. Что внутри этого узла и как он работает?


Устройство типового дифференциала

По своему типу это планетарный редуктор со всеми необходимыми элементами.

  1. Шестерня главной передачи – подает вращение от КПП на дифференциал.
  2. Ведомая шестерня связана и с главной передачей, и с шестернями-сателлитами.
  3. Сателлиты – закреплены в «чашке» ведомой шестерни, так что вращаются вместе с ней.
  4. Шестерни полуосей – соединены с сателлитами и не контактируют с остальными элементами дифференциала.

Детально показано на видео-ролике, ниже.

  1. От КПП выходит вал главной передачи, от которого вращение передается на ведомую шестерню.
  2. Ведомая шестерня и скрепленная с ней «чашка» (водило) принимают крутящий момент.
  3. Вращаясь, ведомая шестерня и чашка приводят в движение шестерни-сателлиты.
  4. Сателлиты, в свою очередь, передают вращение на полуоси.
  5. При равной нагрузке на полуоси (когда автомобиль движется по прямой дороге с равномерным покрытием) сателлиты не вращаются. Работает только ведомая шестерня, в чашке которой закреплены сателлиты, и они описывают обороты вместе с ней, при этом не совершая вращения вокруг своей оси. Таким образом, момент вращения распределяется на полуоси поровну, 50:50.
  6. Когда автомобиль поворачивает и одно из колес должно замедлить, а второе – ускорить движение, сателлиты приходят в движение. За счет конической зубчатой передачи они, вращаясь, замедляют одну полуось и ускоряют вторую. Другими словами, перераспределяют момент вращения в нужной пропорции, вплоть до 0:100 без потери усилия.
  7. При пробуксовке одного колеса включается механизм блокировки, без которого на то колесо, которое вращается быстрее, ушел бы весь момент вращения. Без блокировки автомобиль останавливается при попадании хотя бы одного колеса на скользкую поверхность.

При прямолинейном движении

Когда автомобиль движется прямолинейно по гладкой поверхности с твёрдым сухим покрытием, обе полуоси вращаются с одинаковой угловой скоростью. Полуосевые шестерни находятся в покое одна относительно другой, весь дифференциал сильно похож на монолитную конструкцию.

Сателлиты, будучи связанными через свои зубья с обеими полуосевыми шестернями, относительно своих осей не вращаются. Момент распределяется поровну между осями, если дифференциал симметричный и свободный, то есть лишён блокировок. Впрочем, с блокировками в таком идеальном случае будет то же самое.

При повороте

В повороте, а это обычный режим работы дифференциала, поскольку идеальных прямых в природе не существует, одно из колёс всегда будет вращаться быстрее. Сателлиты придут в движение относительно своих осей, но связь между полуосевыми шестернями и корпусом не утратят. То есть момент продолжит передаваться от корпуса к колёсам, причём всё в том же соотношении 50/50.

Это очень любопытно рассмотреть с точки зрения мощности. Момент одинаков, а скорость у внешнего от поворота колеса больше, то есть и мощность на него передаётся пропорционально большая.

И это неудивительно, так как чем больше скорость, тем выше потери, которые компенсируются добавкой мощности. При этом ни малейших помех вращению колёс с разной скоростью создаваться не будет, в отличие от жёсткой связи.

При пробуксовке

Гораздо менее приятно дела обстоят в том случае, когда одно из колёс попало на относительно скользкий участок дороги и сорвалось в пробуксовку при разгоне. Сцепления с дорогой нет, а значит момент сопротивления покрытия резко падает. Но этот момент всегда равен тяговому, это закон физики. Значит и тяговый момент упадёт.

Свободный симметричный дифференциал делит тягу пополам между колёсами. Всегда 50/50. То есть при падении момента на одном до нуля, на втором он обнулится автоматически. Автомобиль начнёт терять скорость, а если речь идёт о трогании с места на льду или жидкой грязи, то он просто там и останется, не сумев выехать из засады.

В этом главный недостаток свободного дифференциала. Он может передать усилие только то, которое способно переварить колесо, находящееся в худших условиях. Даже если второе будет на сухом чистом асфальте, автомобиль никуда не поедет. Вся энергия уйдет на быстрое и бесполезное вращение буксующего колеса.

Виды блокировок дифференциала

Есть несколько видов блокировки:

  • Полная. Напрямую подсоединить корпус к полуоси, которая получает основную нагрузку и жестко его закрепить. Т.е. передать крутящий момент, как он есть, на колеса.
  • Частичная. Ограничить в планетарном механизме вращение сателлитов. При этом заблокировать дифференциал получиться частично, а значит и крутящий момент перераспределить также частично, но большую его часть перенаправить на колесо со сцеплением.

По способу включения бывают:

  • ручной блокировки;
  • автоматической (самоблокирующей).

Привод ручной блокировки может быть:

  • механический;
  • электрический;
  • гидравлический;
  • пневматический.

Как правило ручная блокировка происходит за счет кулачкового механизма. Он приводит в действие принудительную блокировку дифференциала, с помощью переключателя на приборной панели или рычажного механизма. Т.е. водитель вручную должен активировать блок. Никаких датчиков и напоминаний. Механизм универсален для применения. Водитель, включая специальную муфту, соединяет полуось с корпусом дифференциала, и момент передается на прямую без участия сателлитов.

Если Вы купили автомобиль со значком «полный привод», это еще вовсе не значит, что на нем установлена блокировка дифференциала. К сожалению, не все любители 4Х4 об этом знают. Поэтому внедорожник, повисший в диагональном вывешивание в колее грунтовой дороги, совсем не редкость. В этой ситуации колеса, находящие в воздухе, энергично крутятся, а те, что плотно прижаты к земле, стоят без участия. Почему же так происходит?

Для городских автомобилей, вполне достаточно штатного дифференциала. Если на заснеженной трассе встретился участок со льдом, они передадут большую часть крутящего момента колесу, оставшемуся на твердой поверхности. Но для поездок по сложному бездорожью, или размытой грунтовке, этого мало.

Поэтому изобрели механизмы, которые по ситуации, или по желанию водителя, могут осуществить блокировку, у полноприводных монстров даже на выбор, заднего или переднего дифференциала и блокировку межосевого дифференциала.

Дифференциал как часть трансмиссии

Дифференциал в автомобиле — это механизм, распределяющий крутящий момент карданного вала трансмиссии между ведущими колесами передней или задней оси (в зависимости от типа привода), позволяя каждому из них вращаться без пробуксовки. В этом заключается основное назначение дифференциала.


Ведуший мост с дифференциалом в разрезе

При прямолинейном движении, когда колеса нагружены одинаково и имеют равную угловую скорость вращения – механизм работает в качестве передаточного звена. Если условия движения изменяются (поворот, пробуксовка) – нагрузка становится неравномерной. У полуосей появляется необходимость вращаться с разными скоростями, и, как следствие, становится необходимым распределить полученный крутящий момент между ними в определенном соотношении. Тогда узел выполняет вторую важную функцию: обеспечение безопасного маневрирования автомобиля.

Схема расположения дифференциала зависит от типа привода автомобиля:

  1. Передний привод – картер коробки передач.
  2. Задний привод – корпус ведущего моста.
  3. Полный привод – корпусы переднего и заднего мостов (для передачи крутящего момента ведущим колесам) или раздаточная коробка (для передачи крутящего момента ведущим мостам).

Дифференциал на автомобилях появился не сразу. Конструкторы первых «самодвижущихся экипажей» были очень озадачены плохой маневренностью своих изобретений. Вращение колёс с одинаковой угловой скоростью во время прохождения поворота приводило к тому, что одно из них начинало буксовать или, наоборот, полностью теряло контакт с дорогой. Инженеры вспомнили, что на ранних прототипах первых автомобилей, снабжаемых паровыми двигателями, было устройство, позволявшее избежать потери управляемости.

Механизм распределения вращающего момента изобрёл француз Онесифор Пеккёр. В устройстве Пеккёра присутствовали валы и шестерни. Через них крутящий момент от мотора поступал к ведущим колёсам. Но даже после применения изобретения Пёккера проблема пробуксовки колёс на поворотах не решилась полностью. Выявились недостатки системы. Например, одно из колес в какой-то момент терял сцепление с дорогой. Сильнее всего это проявлялось на обледенелых участках.

Пробуксовка в таких условиях часто приводила к авариям, поэтому конструкторы надолго задумались над тем, как предотвратить занос машины. Решение было найдено Фердинандом Порше. Он стал изобретателем кулачкового механизма, который ограничивал проскальзывание колёс ведущего моста. Немецкое устройство дифференциала нашло применение в автомобилях Volkswagen.

Виды дифференциалов

Конкретных реализаций дифференциалов много, если не говорить только о самом распространённом – коническом свободном. И классифицировать их можно по разным признакам.

Место установки

Для развязки колёс одной ведущей оси используется межколёсный дифференциал в редукторе ведущего моста. Если этот редуктор установлен в коробке передач переднеприводной машины – значит там и смонтирован дифференциал.

Некоторые машины оснащены постоянным полным приводом. Это означает, что он включён всегда. Но при этом оси могут иметь разную скорость, например, в том же повороте. И тогда в элемент трансмиссии, называемый раздаточной коробкой, внедряется межосевой дифференциал, работающий так же, как было рассмотрено в случае межколёсного.

Вид зубчатой передачи

По типу применяемых зацеплений дифференциалы подразделяются на:

  • самый распространённый – конический, по форме полуосевых шестерён и сателлитов;
  • цилиндрический, применяется значительно реже, но иногда по компоновочным и функциональным соображениям незаменим, напоминает планетарную передачу;
  • червячный, бывает построен разными способами, чаще всего этот тип зацепления используется в самоблокирующихся дифференциалах, червячные пары могут создавать значительное внутреннее трение.

От размеров и организации зубчатых пар зависит также и симметрия дифференциала

Иногда важно отправлять на одну ось больший момент, чем на вторую. Например, в некоторых версиях 4-matic от Mercedes 65% момента идёт на заднюю ось, 35 – на переднюю

По принципу блокировки

Блокируемые дифференциалы лишены упомянутого выше главного недостатка по части проходимости и динамичного разгона при недостаточном сцеплении с дорогой.

Достигается это разными способами:

  • Дисковые блокировки и их менее эффективные разновидности LSD работают по принципу поджатия пакета фрикционных дисков по мере увеличения разности в скоростях между колёсами оси, в результате часть момента всё же поступает на ту сторону, где есть зацеп;
  • Червячные работают примерно так же, но несколько мягче, за счёт дополнительного проворота сателлитов червячного типа перед их упором торцами в корпус с последующей блокировкой относительного смещения полуосей, это самые распространённые типы самоблоков, различаются ориентацией сателлитов относительно оси;
  • Электронной блокировкой принято называть её имитацию, когда вывешенное колесо зажимается тормозными колодками и момент перебрасывается на загруженное, чем эта схема работает эффективней, тем больше потери, перегрузки и износ тормозов, тем не менее она часто спасает легковые машины и кроссоверы в трудной ситуации;
  • Вискомуфты могут выполнять роль как дифференциалов, так и их блокировок, в первом случае они включаются последовательно в линию передачи момента и могут её прерывать, а во втором – блокируют входной и выходной валы, препятствуя работе свободного дифференциала.

Самой эффективной блокировкой будет жёсткая механическая с электрическим или пневмоприводом. Именно так и сделано на лучших внедорожниках, там блокируются все три дифференциала, межосевой и два межколёсных.

Разновидности автомобильных дифференциалов

Помимо конического, цилиндрического и червячного, существуют и успешно используются следующие разновидности дифференциалов: дифференциал с полной блокировкой, дифференциал Торсен, дифференциал Квайф, вискомуфта.

Дифференциал с полной блокировкой

Дифференциалы этого типа чаще всего используются на грузовиках и внедорожниках. Их блокировка включается и отключается непосредственно из салона с помощью специальной клавиши водителем. Они используются для повышения проходимости автомобилей.

Межосевой дифференциал с блокировкой типа Torsen

Конструкция рабочего привода данной системы состоит из следующих единиц:

  1. корпус;
  2. правая полуосевая шестерня;
  3. левая полуосевая шестерня;
  4. сателлиты правой и левой полуосевых шестерен;
  5. выходные валы.

Стоит отметить, что дифференциал Torsen имеет наиболее совершенную конструкцию.

Принцип работы:

Межосевой блокируемый дифференциал Torsen состоит из ведомых и ведущих червячных колес, иначе называемых полуосевыми и саттелитами. В такой системе блокировка случается вследствие особенностей функционирования шестерен данного типа. В нормальном состоянии им задается определенное передаточное число. Если колеса имеют хорошее сцепление с поверхностью и движутся плавно, работа дифференциала происходит точно так же, как и у симметричного. Но как только происходит резкое увеличение момента, саттелит пытается начать движение в обратную сторону. Полуосевая червячная шестерня перегружается, и происходит блокировка выходных валов. При этом лишний крутящий момент двигателя переходит на другую ось. Максимальная степень перераспределения момента для дифференциалов Torsen – 75 на 25.

Наиболее известной разновидностью данной системы является Torsen Audi Quattro. Это один из самых популярных механизмов в конструкциях современных полноприводных автомобилей. Его неоспоримыми преимуществами являются широкий спектр переброса вращающего момента, мгновенная скорость срабатывания и отсутствие негативного влияния на тормозную систему. А вот к недостаткам можно отнести сложность конструкции со всеми сопутствующими последствиями.

Преимущества дифференциалов этой конструкции

Преимуществ у данной конструкции достаточно много. Данный механизм устанавливают за то, что точность его работы чрезвычайно высокая, при этом работает устройство очень плавно и тихо. Мощность распределяется между колесами и мостами автоматически – какое-либо вмешательство водителя не нужно. Перераспределение момента никак не влияет на торможение. Если дифференциал эксплуатируется корректно, то обслуживать его не нужно – от водителя требуется только проверять и периодически менять масло.

Именно поэтому многие водители ставят дифференциал “Торсен” на “Ниву”. Там также применена система постоянного полного привода и никакой электроники, поэтому нередко любители экстрима меняют штатный дифференциал на данный узел.

Недостатки

Есть и минусы. Это высокая цена, ведь внутри конструкция устроена достаточно сложно. Так как дифференциал работает на принципе терния, из-за этого повышается расход топлива. При всех преимуществах КПД довольно низкий, если сравнивать с похожими системами другого типа. Механизм имеет высокую предрасположенность к заклиниванию, а износ внутренних элементов довольно интенсивный. Для смазки нужны специальные продукты, так как при работе узла выделяется много тепла. Если на одной оси установлены разные колеса, то детали изнашиваются еще более интенсивно.

Дифференциалы Квайф

Отличительной особенностью дифференциалов этого типа является то, что сателлиты в них располагаются параллельно оси вращения корпуса (чаши), причем в два ряда. Кроме того, при функционировании этих агрегатов образуются силы трения, которые при необходимости автоматически осуществляют блокировку, повышают проходимость и силу тяги автомобиля. Чаще всего дифференциалы Квайф используются для тюнинга легковых автомобилей и внедорожников.

Вискомуфта

Функционирование этот типа дифференциала основано на том же принципе, что и работа гидротрансформатора. Чаще всего вискомуфты используются в автомобилях с полным приводом и используются для того, чтобы обеспечивать связь передних колес с задними по следующему принципу: если одни из них проскальзывают, то крутящий момент транслируется на другие, за счет чего и решается проблема пробуксовки. Конструктивно вискомуфта представляет собой цилиндр, в которой находится погруженный в вязкую жидкость пакет металлических дисков, имеющих перфорацию, и соединенных с валами (как ведущим, так и ведомым). В зависимости от температуры вязкость жидкости меняется, на чем и основывается принцип работы этого агрегата.

История способов решения проблемы буксующего колеса

  • 1825 — Онесифор Пеккёр (Onesiphore Pecqueur, 1792—1852) изобрёл дифференциал.
  • 1932 — Фердинанд Порше начал исследования в области дифференциалов c проскальзыванием.
  • 1935 — компания «ZF Friedrichshafen AG», сотрудничающая с «Порше», выпустила на рынок кулачковый дифференциал, примененный впоследствии на ранних моделях Фольксваген (Type B-70)
  • 1956 — американская компания Packard одной из первых начала выпуск моделей с -дифференциалом под фирменным названием «Twin Traction». В 60-х годах многие компании начали производство LSD-дифференциалов под различными фирменными названиями:
  • Alfa Romeo: Q2
  • American Motors: Twin-Grip
  • Buick: Positive Traction
  • Cadillac : Controlled
  • Chevrolet/GMC: Positraction
  • Chrysler: Sure Grip
  • Dana Corporation:Trak-Lok or Powr-Lok
  • Ferrari: E-Diff
  • Fiat: Viscodrive
  • Ford: Equa-Lock and Traction-Lok
  • International: Trak-Lok или Power-Lok
  • Jeep: Trac-Lok (clutch-type mechanical), Tru-Lok (gear-type mechanical), and Vari-Lok (gerotor pump), Power Lok
  • Oldsmobile: Anti-Spin
  • Pontiac: Safe-T-Track
  • Porsche: PSD (electro-hydraulic mechanical)
  • Saab: Saab XWD eLSD
  • Studebaker-Packard Corporation: Twin Traction
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *