Перевод кинематической вязкости в динамическую

Содержание:

Обозначения моторных масел по классификации SAE

Классификация SAE (Американское Общество Автомобильных Инженеров) характеризует вязкость и определяет в какой сезон можно использовать масло. В паспорте на автомобиль производитель регламентирует подходящие марки.

Масла по классификации SAE делятся на:

  • Зимние – в маркировке присутствует буква – W (winter) 0W, 5W, 10W, 15W, 20W, 25W;
  • Летние – 20, 30, 40, 50, 60;
  • Всесезонные – 0W-30, 5W-40 и т.д.

Цифра стоящая перед буквой W в обозначении моторного масла указывает на его низкотемпературную вязкость, то есть на порог температуры, при которой двигатель автомобиля, заправленный этим маслом, может завестись «на холодную», а масляный насос прокачает масло без угрозы сухого трения деталей мотора. Например, для масла 10W40, минимальной температурой является -10 градусов (от цифры, стоящей перед буквой W отнимаем 40), а критической температурой при которой стартер сможет провернуть мотор является -25 градусов (от цифры, стоящей перед буквой W отнимаем 35). Таким образом, чем меньше цифра стоящая перед буквой W в обозначении масла, тем на более низкую температуру воздуха оно рассчитано.

Цифра стоящая после буквы W в обозначении моторного масла указывает на его высокотемпературную вязкость, то есть минимальную и максимальную вязкость масла при его рабочих температурах (от 100 до 150 градусов). Чем выше цифра стоящая после буквы W, тем выше вязкость этого моторного масла при рабочих температурах.

Какая высокотемпературная вязкость должна быть у моторного масла для двигателя вашего автомобиля знает только его производитель, именно поэтому рекомендуется строго соблюдать требования автопроизводителя к моторным маслам, которые указаны в руководстве по эксплуатации вашего автомобиля.

Масла с разной степнью вязкостью рекомендуется использовать при разных температурных режимах:

SAE 0W-30 — от -30° до +20°C;

SAE 0W-40 — от -30° до +35°C;

SAE 5W-30 — от -25° до +20°C;

SAE 5W-40 — от -25° до +35°C;

SAE 10W-30 — от -20° до +30°C;

SAE 10W-40 — от -20° до +35°C;

SAE 15W-40 — от -15° до +45°C;

SAE 20W-40 — от -10° до +45°C.

Коэффициенты вязкости среды

Взаимодействие слоев среды друг на друга сказывается на характеристиках всей системы жидкости или газа. Вязкость – это один из примеров такого физического явления, как трение. Благодаря ей верхние и нижние слои среды постепенно выравнивают скорости своего тока, и в конечном итоге она приравнивается к нулю. Также вязкость можно характеризовать как сопротивление одного слоя среды другому.

Для описания таких явлений выделяют две качественные характеристики внутреннего трения:

  • динамический коэффициент вязкости (динамическая вязкость жидкости);
  • кинетический коэффициент вязкости (кинетическая вязкость).

Обе величины связаны уравнением υ = η / ρ, где ρ – плотность среды, υ – кинетическая вязкость, а η – динамическая вязкость.

Теплофизические свойства воды на линии насыщения (100…370°С)

В таблице представлены теплофизические свойства воды H2O на линии насыщения в зависимости от температуры (в диапазоне от 100 до 370°С). Каждому значению температуры, при которой вода находится в состоянии насыщения, соответствует давление ее насыщенного пара. При этих параметрах жидкость и ее пар находятся в состоянии насыщения или термодинамического равновесия.

В таблице даны следующие теплофизические свойства воды в состоянии насыщенной жидкости:

  • давление насыщенного пара при указанной температуре p, Па;
  • плотность воды ρ, кг/м3;
  • удельная энтальпия воды h, кДж/кг;
  • удельная (массовая) теплоемкость Cp, кДж/(кг·град);
  • теплопроводность λ, Вт/(м·град);
  • температуропроводность a, м2/с;
  • вязкость динамическая μ, Па·с;
  • вязкость кинематическая ν, м2/с;
  • коэффициент теплового объемного расширения β, К-1;
  • коэффициент поверхностного натяжения σ, Н/м;
  • число Прандтля Pr.

Свойства воды на линии насыщения имеют зависимость от температуры. Ее влияние особенно сказывается на вязкости воды — динамическая вязкость H2O при повышении температуры значительно снижается. Если, при температуре 100°С значение этого свойства воды в состоянии насыщения равно 282,5·10-6 Па·с, то при температуре, равной, например 370°С, динамическая вязкость снижается до величины 56,9·10-6 Па·с.

Другие свойства воды такие, как плотность, теплопроводность, удельная теплоемкость, температуропроводность при росте ее температуры имеют тенденцию к снижению своих значений. Например, плотность воды уменьшается с 958,4 до 450,5 кг/м3 при нагревании со 100 до 370°С.

Теплопроводность воды в состоянии насыщения при увеличении температуры также снижается (в отличие от нормальных условий и температуре до 100°С, при которых имеет место ее рост в процессе нагрева). Снижение теплопроводности связано с увеличением как температуры, так и давления насыщенной жидкости.

Следует отметить, что удельная энтальпия воды в зависимости от температуры значительно увеличивается при нагревании, как до температуры кипения, так и выше.

Вязкость глицерина

Глицерин представляет собой органическое соединение, относящееся к группе спиртов (трехатомный спирт). Это бесцветная сиропообразная жидкость, сладковатая на вкус, с широким спектром использования: востребована не только в лекарственных и косметических целях, но и в пищевой, лакокрасочной, бумажной, текстильной промышленности, электротехнике, сельском хозяйстве и пр. Добывают глицерин из растительных жиров или посредством химического синтеза.

Вязкость глицерина довольно высока — составляет 1,48 Па•с при температуре 20 °С, а это почти в 1500 раз выше вязкости воды.

Для перекачивания глицерина больше всего подходят шестеренчатые, импеллерные и мембранные насосы.

Немного о вязкости смазочных жидкостей

Вязкость определяется сопротивляемостью жидких материалов течению под различными воздействиями, в частности, силы тяжести. Если сравнивать различные жидкости, к примеру, пчелиный мед и воду, можно заметить, что первая течет гораздо хуже. Вязкость можно рассматривать с точки зрения умения жидкого материала сопротивляться сдвигу частей друг относительно друга или смещению слоя жидкости относительно поверхности деталей во время их совместного передвижения.

В механике сплошных сред различаются две величины вязкости: кинематическая и динамическая.

Динамическая (ДВМ) представляет собой отношение усилия, которое прикладывается к жидкому материалу, к степени искажения. Она измеряется в Па∙с или в Пуазах.

Что такое кинематическая вязкость моторного масла? Она определяется отношением динамической величины к плотности среды при одинаковой температуре. Этот показатель можно получить, измерив время вытекания определенного объема через калиброванное отверстие под воздействием силы тяжести. Измерить индекс позволяет устройство, называемое вискозиметром. Если рассматривается кинематическая вязкость масла: в чем измеряется величина? В различных системах для этого используется несколько единиц: м²/с, стокс, градус Энглера.

Рис.1. Единицы измерения кинематической вязкости масла.

Для определения вязкости выпускается несколько видов приборов. Выбор вискозиметра определяется условиями использования. Устройство может применяться в лабораторных условиях, а также для постоянного контроля состояния жидких материалов. Это часто требуется в производственном процессе. Кроме этого, температурные показатели веществ также могут различаться. Сегодня производится оборудование для работы в температурном режиме минус 50…плюс 2000 градусов.

Чтобы определиться с оптимальным вискозиметром, следует учитывать несколько критериев:

  • необходимую точность замеров;
  • диапазон измерений;
  • условия эксплуатации прибора.

Приборы для определения кинематической вязкости масел (КВМ):

  • Капиллярные. Этот тип оборудования позволяет определить время, за которое установленный объем жидкого вещества сможет преодолеть капилляр.
  • Ротационные. В данном устройстве жидкость, у которой определяется вязкость, размещена между цилиндрами. От одного из них, вращающегося с определенной скоростью, вращательный момент передается через жидкий материал второму, изначально статичному. Показатель вязкости среды оценивается по вращающему моменту второго цилиндрического звена прибора.
  • С движущимся шарообразным телом. Показатель вязкости среды оценивается по расстоянию, которое способен пройти шар, помещенный в жидкое вещество.
  • Пузырьковые. Устройства этого типа предназначены для оценки перемещения газа в жидком материале.
  • Ультразвуковые. Для определения вязкости исследуются импульсы, испускаемые зондом (время их затухания).
  • Вибрационные. В этом оборудовании в жидкую среду опускается зонд, который начинает вибрировать. Определение кинематической вязкости масла проводится посредством оценки степени затухания его колебаний.

Определение кинематической вязкости нефтепродукта в капиллярных вискозиметрах

Приборы для определения вязкости называются вискозиметрами. Чаще всего для определения кинематической вязкости по ГОСТ 33-82 пользуются стеклянными вискозиметрами типа.

Пинкевича и ВПЖТ-2 с помощью которых измеряют кинематическую вязкость продуктов при положительных и отрицательных значениях температуры. В основе метода лежит известная формула Пуазейля для динамической вязкости:

n=(3.14Pr4/8LV ) t

где

  • Р – давление, при котором происходит истечение жидкости из капилляра
  • r – радиус капилляра
  • L – длина капилляра
  • V – объем жидкости, протекающей через капилляр
  • t – время истечения жидкости в объеме V.

Вязкость нефтепродуктов: аппараты для исследований от «БМЦлаб»

Для анализа качество топлива в каждой лаборатории должны находиться только точные и надежные приборы! В нашем каталоге вы найдете такие технические средства, как устройство «ПОС-А», устройство «ПОС-В», измеритель «ИТФ» и другие. Вся продукция имеет сертификаты, так что в работоспособности наших приборов можно не сомневаться. Звоните!

Вязкость мазута

Мазут является продуктом первичной нефтепереработки. Вязкость является важнейшим критерием его эксплуатации, транспортировки, перекачивания, сжигания. Мазут бывает высоковязким и маловязким. В первом случае он содержит больше смолистых веществ и парафина.

Согласно показателю вязкости выделяют несколько марок мазута, каждая из них имеет свою температуру застывания вещества. Наиболее вязкие сорта застывают уже при 25 °С. Чтобы перекачивать такой продукт, его приходится подогревать до 60–70 °С. В подогреваемом мазуте начинают плавиться церезины, твердые парафины, но прекращение термообработки вновь приводит к увеличению вязкости, она быстро возвращается на исходный уровень.

Для перекачивания мазута подходят шестеренчатые, винтовые, ламинарные, реже центробежные насосы.

Вязкость крови

Кровь представляет собой жидкую среду организма (вязкопластическую жидкость), состоящую из плазмы и находящихся в ней клеток (эритроцитов, тромбоцитов, лейкоцитов, белков). Она определяет качество всех процессов, происходящих в тканях и отдельных органах.

Вязкость крови показывает соотношение количества ее кровяных клеток к объему плазмы. Этот показатель крайне важен для полноценной работы организма и прежде всего сердечно-сосудистой системы. Нормальным значением в среднем считается 4–5 мПа•с, отклонения же в ту или иную сторону способны вызвать серьезные патологии. На вязкость крови влияют многие факторы: температура тела, состав (венозная более вязкая, чем артериальная), пол (у мужчин — 4,3–5,3 мПа•с, у женщин — 3,9–4,5 мПа•с), возраст (у новорожденных вязкость выше), внешние воздействия, применение медицинских препаратов.

Для перекачивания крови животных на производстве используется насосные установки разных типов: центробежные, мембранные, шестеренчатые, винтовые, перистальтические.

Ссылки

  1. Сервей, Р. А. и Джуэтт, Дж. У. (2005). Физика для науки и техники. Том 1 (2005). Издание седьмое. Издание Cengage Learning.
  2. Вик, Р. Л. (1987). Современная медицинская физиология. Первое издание. Издательство McGraw-Hill.
  3. Уиттен, Дэвис, Пек и Стэнли. (2008). Химия. (8-е изд.). CENGAGE Обучение.
  4. Википедия. (2020). Вязкость. Получено с: en.wikipedia.org
  5. Джонс, Эндрю Циммерман. (11 февраля 2020 г.). Что такое вязкость в физике? Получено с: thinkco.com
  6. Engineering ToolBox. (2003). Абсолютная, динамическая и кинематическая вязкость. Получено с: engineeringtoolbox.com
  7. Глен Элерт. (2020). Вязкость. Гипертекст по физике. Получено с: Physics.info
  8. Редакторы Энциклопедии Британника. (2020). Вязкость. Получено с: britannica.com

Теплофизические свойства воды на линии насыщения (100…370°С)

В таблице представлены теплофизические свойства воды H2O на линии насыщения в зависимости от температуры (в диапазоне от 100 до 370°С). Каждому значению температуры, при которой вода находится в состоянии насыщения, соответствует давление ее насыщенного пара. При этих параметрах жидкость и ее пар находятся в состоянии насыщения или термодинамического равновесия.

В таблице даны следующие теплофизические свойства воды в состоянии насыщенной жидкости:

  • давление насыщенного пара при указанной температуре p, Па;
  • плотность воды ρ, кг/м3;
  • удельная энтальпия воды h, кДж/кг;
  • удельная (массовая) теплоемкость Cp, кДж/(кг·град);
  • теплопроводность λ, Вт/(м·град);
  • температуропроводность a, м2/с;
  • вязкость динамическая μ, Па·с;
  • вязкость кинематическая ν, м2/с;
  • коэффициент теплового объемного расширения β, К-1;
  • коэффициент поверхностного натяжения σ, Н/м;
  • число Прандтля Pr.

Свойства воды на линии насыщения имеют зависимость от температуры. Ее влияние особенно сказывается на вязкости воды — динамическая вязкость H2O при повышении температуры значительно снижается. Если, при температуре 100°С значение этого свойства воды в состоянии насыщения равно 282,5·10-6 Па·с, то при температуре, равной, например 370°С, динамическая вязкость снижается до величины 56,9·10-6 Па·с.

Другие свойства воды такие, как плотность, теплопроводность, удельная теплоемкость, температуропроводность при росте ее температуры имеют тенденцию к снижению своих значений. Например, плотность воды уменьшается с 958,4 до 450,5 кг/м3 при нагревании со 100 до 370°С.

Теплопроводность воды в состоянии насыщения при увеличении температуры также снижается (в отличие от нормальных условий и температуре до 100°С, при которых имеет место ее рост в процессе нагрева). Снижение теплопроводности связано с увеличением как температуры, так и давления насыщенной жидкости.

Следует отметить, что удельная энтальпия воды в зависимости от температуры значительно увеличивается при нагревании, как до температуры кипения, так и выше.

ОПРЕДЕЛЕНИЕ коэффициента вязкости внутреннего тренияжидкости методом Стокса

Фамилия И.О.
_________________   Группа __________   Дата ______

Введение

Вязкость (внутренне трение)
обуславливается силой трения, возникающей при относительном смещении слоев
жидкости. Вязкость жидкости характеризуется коэффициентом вязкости. Эта
величина определяет свойства жидкости и связывает силу внутреннего трения в
жидкости со скоростью ее частиц.

Физический смысл коэффициента вязкости можно выяснить
из следующих соображений. При установившемся потоке жидкости в трубе различные
слои движущейся жидкости имеют различные скорости. Наибольшую скорость имеет
слой, текущий по центральной части трубы. Слой, непосредственно прилегающий к
стенкам трубы, благодаря прилипанию частичек жидкости к стенкам трубы, имеет
скорость . Поэтому распределение скорости текущей
жидкости по трубе определяется величиной  (градиент
скорости), которая показывает изменение скорости на единицу длины радиуса
трубы. Согласно закону Ньютона, сила внутреннего трения между слоями
определяется формулой:

где       η – коэффициент вязкости;

             — градиент скорости;

S –
площадь поверхности, к которой приложена сила.

Из этой формулы следует:

Если предположить, что S равняется
единице поверхности и градиент скорости равен единице, то η = F, то
есть коэффициент вязкости численно равен силе внутреннего трения между слоями,
действующей на единицу поверхности при градиенте скорости равном единице.

В системе СИ коэффициент вязкости измеряется в Ньютон
секундах на квадратный метр и имеет размерность

Основными методами измерения коэффициента вязкости
являются метод истечения жидкости из капилляра, разработанный Пуазейлем и метод
падения шарика, разработанный Стоксом.

В настоящей работе описывается метод Стокса. Маленький
шарик, изготовленный из материала, плотность которого больше плотности
исследуемой жидкости, опускается в исследуемую жидкость, находящуюся в длинной
трубке. На движущейся шарик действуют три силы:

1.Сила тяжести

где       r – радиус шарика;

            ρ – плотность материала шарика;

g –
ускорение силы тяжести ().

2.Сила Архимеда, направленная против
движения шарика:

здесь ρ1 – плотность
вязкой жидкости.

3.Сила внутреннего трения (сила
сопротивления движения шарика). Эта сила также направлена против движения
шарика. Стокс на основании теоретических исследований установил, что если шарик
движется в жидкости, не вызывая при своем движении никаких завихрений, то сила
сопротивления движения шарика определяется формулой

где  —
скорость падения шарика, r – радиус шарика, η – коэффициент вязкости
жидкости.

Следует учесть, что при движении шарика
имеет место не трение шарика о жидкость, а трение отдельных слоев жидкости друг
о друга, так как шарик обволакивается тонким слоем жидкости, и этот слой
жидкости движется вместе с шариком.

Сила трения с увеличением скорости
движения шарика возрастает, следовательно, при движении шарика скорость его
может достигнуть такой величины, при которой все три силы, действующие на
шарик, будут уравновешены, то есть равнодействующая их будет равна нулю. Такое
движение шарика будет равномерным, и шарик будет двигаться по инерции с
постоянной скоростью. Уравнение динамики для такого движения будет:

или

откуда

При движении шарика в цилиндрическом сосуде с
радиусом R и высотой h учет наличия
стенок, дна сосуда и верхней поверхности приводит к следующему выражению для
коэффициента вязкости, установленному теоретически

здесь   R – радиус цилиндра, h – высота
жидкости.

Для шариков малых радиусов 1-2 мм и трубок достаточно
большого диаметра  малая величина. Ею можно в
наших расчетах пренебречь и расчеты вести по формуле (53).

Следует помнить, что коэффициент вязкости зависит от
температуры. При повышении температуры коэффициент вязкости уменьшается.
Поэтому при определении коэффициента вязкости следует указать температуру.

Порядок выполнения работы

1.Получив у лаборанта микрометр и
несколько стальных и чугунных шариков, определить диаметры шариков при помощи
микрометра с точностью до 0,01 мм. Плотность стали принять равной , плотность свинца — , плотность масла —

2.Температуру считать равной
комнатной температуре.

3.Измерить расстояние между метками
на трубке, в которой должен двигаться шарик.

4.Секундомером определить время
прохождения шариком расстояния между красными линиями ab (рис.22).

Глаз следует поместить так, чтобы отсутствовала ошибка
на параллакс. Опыт повторяют с двумя-тремя шариками.

5.Скорость определяется из
соотношения

6.Данные опыта подставить в формулу
(53).

7.Для каждого шарика  отдельно
измеряют время падения и рассчитывают коэффициент вязкости. Затем определяют

8.Найти относительную и абсолютную
ошибки измерения.

Пояснение

В таблице представлены теплофизические свойства воды при температурах от 0 до 100°C.
Для простоты отображения значения колонки «Кинематическая вязкость» умножены на 106 (то есть на единицу с шестью нулями);
для того, чтобы получить настоящее значение нужно разделить значение из ячейки на 106. Вязкость жидкостей с увеличением температуры уменьшается, а газов — увеличивается. Это сязано с различным молекулярным строением жидкостей и газов.
Подробнее о вязкости воды можно посмотреть на этой странице

Температура, °C Плотность, кг/м3 Удельная теплоёмкость, кДж/(кг*K) Кинематическая вязкость, (106)*(м2/с)
999.82 4.217 1.8
1 999.89 4.213 1.74
2 999.94 4.21 1.68
3 999.98 4.207 1.63
4 1000 4.205 1.57
5 1000 4.202 1.52
6 999.99 4.2 1.48
7 999.96 4.198 1.43
8 999.91 4.196 1.39
9 999.85 4.194 1.35
10 999.77 4.192 1.31
11 999.68 4.191 1.28
12 999.58 4.189 1.24
13 999.46 4.188 1.21
14 999.33 4.187 1.18
15 999.19 4.186 1.14
16 999.03 4.185 1.12
17 998.86 4.184 1.09
18 998.68 4.183 1.06
19 998.49 4.182 1.03
20 998.29 4.182 1.01
21 998.08 4.181 0.99
22 997.86 4.181 0.96
23 997.62 4.18 0.94
24 997.38 4.18 0.92
25 997.13 4.18 0.9
26 996.86 4.179 0.88
27 996.59 4.179 0.86
28 996.31 4.179 0.84
29 996.02 4.179 0.82
30 995.71 4.178 0.81
31 995.41 4.178 0.79
32 995.09 4.178 0.77
33 994.76 4.178 0.76
34 994.43 4.178 0.74
35 994.08 4.178 0.73
36 993.73 4.178 0.71
37 993.37 4.178 0.7
38 993 4.178 0.69
39 992.63 4.179 0.68
40 992.25 4.179 0.66
41 991.86 4.179 0.65
42 991.46 4.179 0.64
43 991.05 4.179 0.63
44 990.64 4.179 0.62
45 990.22 4.18 0.61
46 989.8 4.18 0.6
47 989.36 4.18 0.59
48 988.92 4.18 0.58
49 988.47 4.181 0.57
50 988.02 4.181 0.56
51 987.56 4.181 0.55
52 987.09 4.182 0.54
53 986.62 4.182 0.53
54 986.14 4.182 0.52
55 985.65 4.183 0.52
56 985.16 4.183 0.51
57 984.66 4.183 0.5
58 984.16 4.184 0.49
59 983.64 4.184 0.49
60 983.13 4.185 0.48
61 982.6 4.185 0.47
62 982.07 4.186 0.47
63 981.54 4.186 0.46
64 981 4.187 0.45
65 980.45 4.187 0.45
66 979.9 4.188 0.44
67 979.34 4.188 0.44
68 978.78 4.189 0.43
69 978.21 4.189 0.42
70 977.63 4.19 0.42
71 977.05 4.19 0.41
72 976.47 4.191 0.41
73 975.88 4.192 0.4
74 975.28 4.192 0.4
75 974.68 4.193 0.39
76 974.08 4.194 0.39
77 973.46 4.194 0.38
78 972.85 4.195 0.38
79 972.23 4.196 0.37
80 971.6 4.196 0.37
81 970.97 4.197 0.37
82 970.33 4.198 0.36
83 969.69 4.199 0.36
84 969.04 4.2 0.35
85 968.39 4.2 0.35
86 967.73 4.201 0.35
87 967.07 4.202 0.34
88 966.41 4.203 0.34
89 965.74 4.204 0.34
90 965.06 4.205 0.33
91 964.38 4.206 0.33
92 963.7 4.207 0.32
93 963.01 4.208 0.32
94 962.31 4.209 0.32
95 961.62 4.21 0.31
96 960.91 4.211 0.31
97 960.2 4.212 0.31
98 959.49 4.213 0.31
99 958.78 4.214 0.3
100 958.05 4.216 0.3

Зависимость вязкости моторного масла от температуры

С ростом температуры вязкость моторного масла падает, т.е. масло становится более жидким. Вязкость масла может уменьшаться в интервале температур от 0 °С до +100 °С в сотни и тысячи раз. На практике этот эффект используется при замене масла – масло всегда меняют после прогрева двигателя, т.е. когда масло разжижается, иначе слить его максимально полно с двигателя нельзя.

«Обычное минеральное» моторное масло при 0 °С гуще воды более чем в сотни и тысячи раз, а при +100 °С всего лишь в десятки. Кинематическая вязкость моторного масла показывает именно «степень густоты» моторного масла. Она измеряется в сСт (сантиСтоксы или мм /с, 1 сСт = 1 мм /с).

Скорость падения кинематической вязкости с ростом температуры характеризуется ИНДЕКСОМ ВЯЗКОСТИ масла. Проще говоря, индекс вязкости показывает «степень разжижения» масла. Это безразмерная величина, т.е. не измеряется в каких-либо единицах (метрах, километрах, килограммах и т.д.) – это просто цифра!

Чем ниже индекс вязкости моторного масла, тем сильнее масло разжижается, т.е. толщина масляной пленки становится очень маленькой (а за этим следует повышенный износ). Чем выше индекс вязкости моторного масла, тем меньше масло разжижается, т.е. обеспечивается необходимая для защиты трущихся поверхностей толщина масляной пленки.

На практике, в случае реальных моторных масел, низкий индекс вязкости означает плохой запуск двигателя при низких температурах или плохая его защита от износа при высоких температурах.

Пример: отечественное масло M10ДМ (или М10Г2к) – минеральное масло (индекс вязкости ИВ ~100…110), запуск двигателя (при исправном состоянии) при -15 °С затруднен; Shell Rimula D 10W-30 (ИВ~130) – запуск двигателя при его исправном состоянии гарантирован при -25 °С – почувствуйте разницу!

Теоретически, все производители моторных масел хотели бы получить продукт с максимально высоким индексом вязкости (> 300), но к сожалению, это невозможно по причине ряда физических законов. Высококачественные минеральные моторные масла обычно имеют индекс вязкости (ИВ) 120-140, полусинтетические 130-150, синтетические 140-170. На канистрах, этикетках, этот параметр, как правило, не указывается, из-за «излишней сложности восприятия» для потребителя. Вы всегда можете потребовать от представителя производителя масла. Она не является секретной или конфиденциальной!

  • Вязкость – (внутреннее трение) – свойство жидких и газообразных тел оказывать сопротивление их течению – перемещению одного слоя тела относительно другого – под действием внутренних сил. Может быть выражена в единицах вязкости кинематической, динамической, условной и удельной. Физическая модель вязкости жидкого или газообразного тела – это сила, которую необходимо приложить для равномерного перемещения одной пластины относительно покоящейся, при условии, что их разделяет жидкость или газ, отнесенная к площади пластины. В этом случае приложенная сила оказывается равной абсолютной (динамической) вязкости.
  • Кинематическая вязкость – основной эксплуатационный параметр для всех видов моторных и трансмиссионных масел (а также и масел индустриальной номенклатуры). По определению — отношение динамической вязкости ( h ) к плотности ( d ) жидкости или газа при той же температуре: n = h / d

В системе СИ за единицу кинематической вязкости принят квадратный метр за секунду (м2/с), равный кинематической вязкости, при которой динамическая вязкость среды с плотностью 1 кг/м3 равна 1 Па Ч с. В системе СГС принят стокс.

Влияние на работу двигателя: от вязкости масла зависят следующие факторы

  • Толщина образуемой масляной пленки в парах трения (надежность разделения трущихся поверхностей при высоких температурах, стойкость к разрушению до добавления противоизносных присадок)
  • Легкость пуска двигателя в холодную погоду
  • Мощность двигателя (потери на трение, компрессия в ЦПГ)
  • Коэффициент полезного действия двигателя
  • Количество осадков образующихся в картерном масле
  • Расход топлива
  • Расход масла

Вязкость парафина

Парафин является смесью углеводородов преимущественно метанового ряда. Парафины бывают жидкими (температуре их плавления составляет менее 27 °C), твердыми (28–70 °C), микрокристаллическими (или церезины, плавятся при температуре свыше 60–80 °C). Размер и форма кристаллов обусловлена особенностями их получения. Так, нефтяное сырье и медленное охлаждение обеспечивают мелкие тонкие кристаллы, а крупные получаются из селективно очищенных дистиллятных рафинатов.

Расплавленные парафины обладают небольшой вязкостью. Но при одинаковой температуре наиболее вязкими являются церезины.

Применяются парафины для изготовления парафинистой бумаги, пропитывания древесины в карандашном и спичечном производстве, для аппретирования тканей, в медицине для парафинотерапии и пр.

Связь динамической и кинематической вязкости

Вязкость жидкости определяет способность жидкости сопротивляться сдвигу при ее движении, а точнее сдвигу слоев относительно друг друга

Поэтому на производствах, где требуется перекачка различных сред, важно точно знать вязкость перекачиваемого продукта и правильно подбирать насосное оборудование

В технике встречаются два вида вязкости.

  1. Кинематическая вязкость чаще используется в паспорте с характеристиками жидкости.
  2. Динамическая используется в инженерных расчетах оборудования, научно-исследовательских работах и т.д.

Перевод кинематической вязкости в динамическую производят с помощью формулы, указанной ниже, через плотность при заданной температуре:

Где:

v — кинематическая вязкость,

n — динамическая вязкость,

p — плотность.

Таким образом, зная ту или иную вязкость и плотность жидкости можно выполнить пересчет одного вида вязкости в другой по указанной формуле или через конвертер выше.

Измерение вязкости

Понятия для этих двух типов вязкости присуще только жидкостям в связи с особенностями способов измерения.

Измерение кинематической вязкости используют метод истечения жидкости через капилляр (например используя прибор Уббелоде). Измерение динамической вязкости происходит через измерение сопротивление движения тела в жидкости (например сопротивление вращению погруженного в жидкость цилиндра).

От чего зависит значение величины вязкости?

Вязкость жидкости зависит в значительной мере от температуры. С увеличением температуры вещество становится более текучим, то есть менее вязким. Причем изменение вязкости, как правило, происходит достаточно резко, то есть нелинейно.

Поскольку расстояние между молекулами жидкого вещества намного меньше, чем у газов, у жидкостей уменьшается внутреннее взаимодействие молекул из-за снижения межмолекулярных связей.

Форма молекул и их размер, а также взаимоположение и взаимодействие могут определять вязкость жидкости. Также влияет их химическая структура.

Например, для органических соединений вязкость возрастает при наличии полярных циклов и групп.

Для насыщенных углеводородов — рост происходит при «утяжелении» молекулы вещества.

Коэффициент динамической вязкости

Численное обозначение абсолютной вязкости является индексом сопротивляемости испытуемых веществ взаимному перемещению или скольжению их слоев.

Единицей измерения коэффициента в системе СИ приняты паскаль-секунды:

Физическая основа динамического показателя заключается в его соответствии касательному напряжению, которое происходит между слоями вещества, перемещающимися относительно друг друга, при условии расстояния между ними, равного единице длины, и на скорости, равной единице.

Вязкость жидкости

Вязкость жидкости определяется формулой, в которой динамический коэффициент определяет пропорциональность скорости движения слоев и расстояния между ними:

  • τ – касательное напряжение;
  • µ — показатель пропорциональности, который является динамическим индексом вещества.

Закон вязкости жидкости был установлен Ньютоном в конце 17 века. Абсолютный показатель зависит от типа газа или жидкости, температуры веществ.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *