Закон ома
Содержание:
- Примеры из жизни
- Разновидности сил сопротивления
- Сила реакции опоры
- Закон Ома для участка цепи
- Сопротивление при нулевой подъёмной силе
- Что такое в физике сила тяги: формула, определение
- Какие существуют виды сопротивлений
- Потребляемая мощность электроприборов: таблица с показателями
- Падение тел в воздухе.
- Что такое сила сопротивления в физике
- Примеры решения задач
- Средства воспроизведения сопротивления
- Разновидности сил сопротивления
- Сила сопротивления при движении в вязкой среде
Примеры из жизни
Насколько вы сильны?
Рассмотрим простейший пример. Ваш ребёнок сел на санки и просит вас его покатать. С какой силой вам нужно тянуть эти санки, чтобы ребёнок остался доволен быстрой ездой ? Пока санки с ребёнком остаются в состоянии покоя, все силы, действующие на них, уравновешены. Состояние покоя — это частный случай инерции. Здесь на санки действуют две силы: тяжести Fт = m•g, направленная вертикально вниз, и нормального давления N, направленная вертикально вверх. Поскольку санки не движутся, то N – m•g = 0. Тогда из этого равенства следует, что N = m•g.
Когда вы решили покатать своего ребёнка, вы прикладываете силу тяги (Fтяги) к санкам с ребёнком. Когда вы начинаете тянуть санки, возникает сопротивление движению, вызванное силой трения (Fтр.), направленной в противоположную сторону. Это так называемая сила трения покоя. Когда тело не движется, она равна нулю. Стоит потянуть за санки — и появляется сила трения покоя, которая меняется от нуля до некоторого максимального значения (Fтр. max). Как только Fтяги превысит Fтр.max, санки с ребёнком придут в движение.
Чтобы найти Fтяги, применим второй закон Ньютона: Fтяги – Fтр.max = m•a, где a – ускорение, с которым вы тянете санки, m – масса санок с ребёнком. Допустим, вы разогнали санки до определённой скорости, которая не изменяется. Тогда a = 0 и вышеприведённое уравнение запишется в виде: Fтяги – Fтр. max = 0, или Fтяги = Fтр.max. Есть известный закон из физики, который устанавливает определённую зависимость для Fтр.max и N. Эта зависимость имеет вид: Fтр.max = fmax • N, где fmax – максимальный коэффициент трения покоя.
Если в эту формулу подставить выражение для N, то мы получим Fтр.max = fmax•m•g. Тогда формула искомой силы тяги примет вид: Fтяги = fmax•m•g = fск•m•g, где fск = fmax – коэффициент трения скольжения, g – ускорение свободного падения. Допустим, fск = 0,7, m = 30 кг, g = 9,81 м/с², тогда Fтяги = 0,7 • 30 кг • 9,81 м/с² = 206,01 Н (Ньютона).
Насколько силён ваш автомобиль?
Рассмотрим ещё пример. У вас есть автомобиль, мощность двигателя которого N. вы едете со скоростью v. Как в этом случае узнать силу тяги двигателя вашего автомобиля ? Поскольку скорость автомобиля не меняется, то Fтяги уравновешена силами трения качения, лобового сопротивления, трения в подшипниках и т. д. (первый закон Ньютона). По второму закону Ньютона она будет равна Fтяги = m•a. Чтобы её вычислить, достаточно знать массу автомобиля m и ускорение a.
Допустим, вы разогнали свой автомобиль до скорости v за какое-то время t, проехав расстояние s. Тогда Fтяги будет легко рассчитана по формуле: Fтяги = m•v/t. Как и в примере с санками, справедлива также такая формула: Fтяги = f•m•g, где f – коэффициент трения качения, который зависит от скорости автомобиля (чем больше скорость, тем меньше этот коэффициент).
Но что делать, если масса автомобиля m, коэффициент трения качения f и время разгона t неизвестны ? Тогда можно поступить по-другому. Двигатель вашего автомобиля при разгоне совершил работу A = Fтяги • s. Поскольку формула расстояния имеет вид s = v•t, то выражение для работы будет таким: A = Fтяги • v • t. Разделив обе части этого равенства на t, получим A/t = Fтяги • v. Но A/t = N – это мощность двигателя вашего автомобиля, поэтому N = Fтяги • v. Отсюда уже получим искомую формулу: Fтяги =N/v.
Допустим, вы разогнали свой автомобиль до скорости v = 180 км/ч, а мощность его двигателя N = 200 л. с. (лошадиных сил). Чтобы вычислить Fтяги двигателя, необходимо прежде перевести указанные единицы измерения в единицы СИ, т. е. международной системы измерения. Здесь 1 л. с. = 735,499 Вт, поэтому мощность двигателя составит N = 200 л. с. • 735,499 Вт/л. с. = 147099,8 Вт. Скорость в системе СИ будет равна v = 180 км/ч = 180 • 1000 м/3600 с = 50 м/с. Тогда искомое значение будет равно Fтяги = 147099,8 Вт/50 (м/с) = 2941,996 Н ~ 2,94 кН (килоньютона).
Около 3 килоньютонов. Много это или мало ? Допустим, вы жмёте 100 килограммовую штангу. Чтобы её поднять, вам нужно преодолеть её вес, равный P = m•g = 100 кг • 9,81 м/с² = 981 Н (ньютон)~0,98 кН. Полученное для автомобиля значение Fтяги больше веса штанги в 2,94/0,98 = 3 раза. Это равносильно тому, что вы будете поднимать штангу массой в 300 кг. Такова сила тяги двигателя вашего автомобиля (на скорости 180 км/ч).
Таким образом, зная школьный курс физики, мы можем с лёгкостью вычислить силу тяги:
- человека,
- лошади,
- паровоза,
- автомобиля,
- космической ракеты и всех прочих видов техники.
Видео
В нашем видео вы найдете интересные опыты, поясняющие, что такое сила тяги и сила сопростивления.
https://youtube.com/watch?v=fG0ENLTPdbM
Разновидности сил сопротивления
Причинами возникновения силы трения являются:
- неровный характер соприкасающихся поверхностей;
- действие межмолекулярных связей (применимо для гладких поверхностей).
В зависимости от этих факторов, а также с учетом характера движения силы сопротивления бывают:
- Силой качения, которая находится в зависимости от физических свойств опоры, скорости движения, сопротивления воздуха. В формулу для определения силы качения вводится коэффициент f, который уменьшается при росте температуры и давления.
- Сила сопротивления воздуха (если идет лобовое взаимодействие). Причина ее появления — разница давлений. Чем выше вихреобразование, тем выше этот показатель. Вихреобразование же, в свою очередь, зависит от формы самого движущегося тела.
Пример
Передняя часть движущегося тела будет всегда испытывать большее сопротивление воздуха. При закруглениях спереди и сзади плоскостенного тела сопротивление уменьшается на 72%.
Существует понятие электрического сопротивления, под которым понимается свойство проводника препятствовать прохождению тока. Величина, с которой это происходит, равняется частному от деления напряжения на концах к силе тока, протекающему в последовательной цепи.
Сила реакции опоры
Представим очень тяжелый предмет, лежащий на столе. Стол прогибается под тяжестью предмета. Но согласно стол воздействует на предмет с точно такой же силой, что и предмет на стол. Сила направлена противоположно силе, с которой предмет давит на стол. То есть вверх. Эта сила называется реакцией опоры. Название силы «говорит» реагирует опора. Эта сила возникает всегда, когда есть воздействие на опору. Природа ее возникновения на молекулярном уровне. Предмет как бы деформировал привычное положение и связи молекул (внутри стола), они, в свою очередь, стремятся вернуться в свое первоначальное состояние, «сопротивляются».
Абсолютно любое тело, даже очень легкое (например,карандаш, лежащий на столе), на микроуровне деформирует опору. Поэтому возникает реакция опоры.
Специальной формулы для нахождения этой силы нет. Обозначают ее буквой , но эта сила просто отдельный вид силы упругости, поэтому она может быть обозначена и как
Сила приложена в точке соприкосновения предмета с опорой. Направлена перпендикулярно опоре.
Так как тело представляем в виде материальной точки, силу можно изображать с центра
Закон Ома для участка цепи
С камушками в трубе все понятно, но не только же от них зависит сила, с которой поток воды идет по трубе — от насоса, которым мы эту воду качаем, тоже зависит. Чем сильнее качаем, тем больше течение. В электрической цепи функцию насоса выполняет источник тока.
Например, источником может быть гальванический элемент (привычная батарейка). Батарейка работает на основе химических реакций внутри нее. В результате этих реакций выделяется энергия, которая потом передается электрической цепи.
У любого источника обязательно есть полюса — «плюс» и «минус». Полюса — это его крайние положения, по сути клеммы, к которым присоединяется электрическая цепь. Собственно, ток как раз течет от «+» к «−».
У нас уже есть две величины, от которых зависит электрический ток в цепи — напряжение и сопротивление. Кажется, пора объединять их в закон.
Сила тока в участке цепи прямо пропорциональна напряжению на его концах и обратно пропорциональна его сопротивлению.
Математически его можно описать вот так:
Закон Ома для участка цепи I = U/R I — сила тока U — напряжение R — сопротивление |
Напряжение измеряется в Вольтах и показывает разницу между двумя точками цепи: от этой разницы зависит, насколько сильно будет течь ток — чем больше разница, тем выше напряжение и ток будет течь сильнее.
Сила тока измеряется в амперах, а подробнее о ней вы можете прочитать в нашей статье.
Давайте решим несколько задач на закон Ома для участка цепи.
Задача раз
Найти силу тока в лампочке накаливания торшера, если его включили в сеть напряжением 220 В, а сопротивление нити накаливания равно 880 Ом.
Решение:
Возьмем закон Ома для участка цепи:
I = U/R
Подставим значения:
I = 220/880 = 0,25 А
Ответ: сила тока, проходящего через лампочку, равна 0,25 А
Давайте усложним задачу. И найдем силу тока, зная все параметры для вычисления сопротивления и напряжение.
Задача два
Найти силу тока в лампочке накаливания, если торшер включили в сеть напряжением 220 В, а длина нити накаливания равна 0,5 м, площадь поперечного сечения 0,01 мм2, а удельное сопротивление нити равно 1,05 Ом · мм2/м.
Решение:
Сначала найдем сопротивление проводника.
R = ρ · l/S
Площадь дана в мм2, а удельное сопротивления тоже содержит мм2 в размерности.
Это значит, что все величины уже даны в СИ и перевод не требуется:
R = 1,05 · 0,5/0,01 = 52,5 Ом
Теперь возьмем закон Ома для участка цепи:
I = U/R
Подставим значения:
I = 220/52,5 ≃ 4,2 А
Ответ: сила тока, проходящего через лампочку, приблизительно равна 4,2 А
А теперь совсем усложним! Определим материал, из которого изготовлена нить накаливания.
Задача три
Из какого материала изготовлена нить накаливания лампочки, если настольная лампа включена в сеть напряжением 220 В, длина нити равна 0,5 м, площадь ее поперечного сечения равна 0,01 мм2, а сила тока в цепи — 8,8 А
Решение:
Возьмем закон Ома для участка цепи и выразим из него сопротивление:
I = U/R
R = U/I
Подставим значения и найдем сопротивление нити:
R = 220/8,8 = 25 Ом
Теперь возьмем формулу сопротивления и выразим из нее удельное сопротивление материала:
R = ρ · l/S
ρ = RS/l
Подставим значения и получим:
ρ = 25 · 0,01/0,5 = 0,5 Ом · мм2/м
Обратимся к таблице удельных сопротивлений материалов, чтобы выяснить, из какого материала сделана эта нить накаливания.
Ответ: нить накаливания сделана из константана.
Сопротивление при нулевой подъёмной силе
Эта составляющая сопротивления не зависит от величины создаваемой подъёмной силы и складывается из профильного сопротивления крыла, сопротивления элементов конструкции самолёта, не вносящих вклад в подъёмную силу, и волнового сопротивления. Последнее является существенным при движении с около- и сверхзвуковой скоростью, и вызвано образованием ударной волны, уносящей значительную долю энергии движения. Волновое сопротивление возникает при достижении самолётом скорости, соответствующей критическому числу Маха , когда часть потока, обтекающего крыло самолёта, приобретает сверхзвуковую скорость. Критическое число М тем больше, чем больше угол стреловидности крыла, чем более заострена передняя кромка крыла и чем оно тоньше.
Сила сопротивления направлена против скорости движения, её величина пропорциональна характерной площади S, плотности среды ρ и квадрату скорости V:
X
0
=
C
x
0
ρ
V
2
2
S
{\displaystyle X_{0}=C_{x0}{\frac {\rho V^{2}}{2}}S}
C
x
0
{\displaystyle C_{x0}}
Определение характерной площади зависит от формы тела:
- в простейшем случае (шар) — площадь поперечного сечения;
- для крыльев и оперения — площадь крыла/оперения в плане;
- для пропеллеров и несущих винтов вертолётов — либо площадь лопастей, либо ометаемая площадь винта;
- для подводных объектов обтекаемой формы — площадь смачиваемой поверхности;
- для продолговатых тел вращения , ориентированных вдоль
потока (фюзеляж, оболочка дирижабля) — приведённая волюметрическая площадь, равная V 2/3 , где V — объём тела.
Мощность, требуемая для преодоления данной составляющей силы лобового сопротивления, пропорциональна кубу скорости (
P
=
X
0
⋅
V
=
C
x
0
ρ
V
3
2
S
{\displaystyle P=X_{0}\cdot V=C_{x0}{\dfrac {\rho V^{3}}{2}}S}
).
Что такое в физике сила тяги: формула, определение
Для вычисления величины рассматривают действующие на исследуемый объект силы, находят равнодействующую и применяют второй закон Ньютона. Силой тяги называют прикладываемую к телу силу, которая нужна для поддержания его движения. На примере с автомобилем нельзя говорить, что тяга его двигателя равняется силе тяги машины. Между мощностью мотора и тягой авто огромная разница из-за потерь: нагревание, трение, сопротивление, например, воздуха. Кроме силы тяги на передвигающиеся с ускорением объекты действует сила сопротивления. Сила тяги меньше силы сопротивления по модулю и не совпадает по направлению (не обязательно противоположна).
Тягой двигателя называется сила, которая вырабатывается мотором и служит для выполнения работы или перемещения транспортного средства.
Чему равна сила тяги зависит от случая, ведь существует несколько формул для проведения вычислений. Рассмотрим основные.
- Формула силы тяги через массу или из второго закона Ньютона: FТ — FТР = ma, где:
- Fт и Fтр – силы тяги и трения соответственно;
- m – масса исследуемого объекта;
- a – значение ускорения, с которым тело передвигается относительно точки отсчёта.
- Выражение через полезную мощность: FТ = P/v, здесь:
- P – развиваемая мощность;
- v – скорость передвижения транспортного средства.
- Есть формула нахождения силы тяги для авто, поднимающегося на гору: FT — FТР –mg*sin α, где:
- g – ускорение свободного падения;
- α – угол наклона поверхности, на которую поднимается автомобиль.
Сила, препятствующая движению, называется сопротивлением. Это всевозможные силы трения. Обычно их указывают в процентах от силы тяги, обозначают μ. В таком случае в приведённых выражениях добавляется дополнительный множитель, причем полученное значение отнимают от единицы, если дано в процентах – предварительно переводят в десятичную дробь.
Например, если потери составляют 9%, значение делят на 100 — получим 0,09 и отнимаем его от единицы: 1 – 0,09 = 0,91.
Согласно СИ, изменяется в Ньютонах – Н.
Какие существуют виды сопротивлений
Их немного, одно из которых мы уже разобрали:
- омическое;
- активное;
- индуктивное;
- ёмкостное.
Формулы расчёта электрического сопротивления для переменного тока простыми словами.
К сожалению, наш друг-физик решил не идти нам навстречу и вывел несколько формул по нахождению всех трёх величин. Электрическое сопротивление обозначается буквой R.
Но перед тем как пойти дальше, совет: всегда придумывайте какие-нибудь ассоциации, чтобы запомнилось на всю жизнь, например:
- R (сопротивление). Можете запомнить что R, как рюмка. Нужно сопротивляться, чтобы не выпить ещё одну рюмку.
- I (сила тока). Латинская «I», как проводок, по которому идёт ток.
- U (напряжение). Эта буква, как дуга. И напряжение разносится с одного конца на другой по дуге.
Ну и, конечно, формула закона Ома для участка цепи.
- R=U/I т.е., чтобы найти сопротивление(рюмку) надо напряжение (дугу) разделить на ток (проводок).
- U=IR, хотите найти напряжение (дугу), умножьте проводок на рюмку.
- I=U/R чтобы найти чему равен проводок, нужно напряжение разделить на сопротивление.
Ну а теперь главное, для чего мы все здесь собрались: «Зачем нужен этот закон? Что он даёт?»
Также не забывате, если вдруг вас спросят от чего зависит сопротивление — отвечайте: » От напряжения и мощности».
Формула активного сопротивления
Ну что сказать? Придется запастись терпением и потратить время на все эти законы и определения.
Но к счастью, активное сопротивление, так и осталось большой буквой R. Просто немного поменялась формула и ее предназначение.
Подключим к нашей цепи проводник. Проводником может выступать лампа.
Понятно, что по нему тоже будет проходить ток. Это как танец «волна». Все 5 человек берутся за руки и начинают по очереди создавать колебания. Сопротивление уже известно на всех. Так же и здесь.
Если посмотреть, то можно найти сходство танца «волны» с этой буквой. Так и запомните.
Формула, как рассчитать силу тока:
I=U/Z
О том, как найти общее сопротивление мы поговорим ниже.
Формула индуктивного сопротивления
Боюсь, что когда вы увидите данную формулу, то она вам точно не понравится. Но нет слова «не хочу», есть слово «надо».
Начнем с обозначения:
- XL (индуктивное сопротивление). Прямо как размер в одежде. Но почему именно так? L — это цепь переменного тока;
- f — частота, в Гц;
- сопротивление с частотой взаимосвязаны, так, если возрастает одно — увеличивается и другое;
- единица СИ индуктивного сопротивления: = Ом;
- запомните, что индуктивное сопротивление отличается от омического тем, что у первого нет потери мощности;
- XL=2π×f×L;
- формула расчета мощности по напряжению: P = U×I;
- мощность электрического тока вычисляется в Ватах.
Формула ёмкостного сопротивления Xc
Ёмкостное сопротивление — это проводник, который подключен к цепи. Он не имеет сопротивление, но есть ёмкость. Обозначается это ёмкостное сопротивление буквами Xc.
- Xc = 1/ωC;
- ω — циклическая частота;
- С — ёмкость.
Формула полного сопротивления
Как говорилось выше — полное сопротиление что-то на подобии танца «волны». Нужно узнать R (сопротивление) всех.
Чтобы определить полное сопротивление цепи:
R = R1 +R2 (проводников может быть несколько).
Теперь, если у вас спросят как определить общее сопротивление цепи, вы знаете что делать.
Потребляемая мощность электроприборов: таблица с показателями
Для проведения вычислений вам необходимы элементарные знания электродинамике из школьного курса, связанные с мощностью, напряжением, током. Для того, чтобы рассчитать потребляемую мощность прибора, необходимо знать величину напряжения, а также силу источника. Мощность (Р) можно высчитать посредством перемножения силы тока на показатель электрического напряжения в сети.
Используются следующие показатели:
- В качестве несистемной единицы измерения мощности иногда используют многие вольт-ампер;
- В данном случае силу указывают в автоматических выключателях.
Оно верно является максимальным значением, при котором происходит срабатывание прерывателя.
Падение тел в воздухе.
Пока
скорость падающего тела еще мала, невелика и сила сопротивления воздуха; но по
мере того, как возрастает скорость падения, эта сила быстро растет. При
некоторой скорости сила становится равной по модулю силе , и дальше тело
падает равномерно. Скорость такого падения называют предельной скоростью
падения. Предельная скорость тем больше, чем сильнее разрежен воздух.
Поэтому тело, падающее с очень большой высоты, может в разреженных слоях
атмосферы приобрести скорость, большую предельной скорости для нижних
(плотных) слоев. Войдя в нижние слои атмосферы, тело снизит свою скорость до
значения предельной скорости для нижних слоев.
Упражнение: 68.1.
Деформировано ли тело, падающее с предельной скоростью?
Предельная скорость
падения зависит, помимо плотности атмосферы, от формы и размеров тела и от
силы притяжения тела Землей. Тела малого размера, например мелкие капли воды
(туман), пылинки, снежинки, быстро достигают своей предельной скорости (порядка
миллиметра в секунду и меньше) и затем с этой малой скоростью опускаются вниз.
Свинцовый шарик массы 10 г достигает при падении с достаточной высоты
предельной скорости 40 м/с. Капли дождя падают со скоростью, обычно не
превышающей 7—8 м/с; чем меньше капля, тем меньше и скорость ее падения; если
бы капли дождя падали в безвоздушном пространстве, то при падении на землю с
высоты 2 км они достигали бы, независимо от их размеров, скорости 200 м/с;
такой же скорости при падении с той же высоты в безвоздушном пространстве
достигло бы и всякое другое тело. При такой скорости удары капель дождя были
бы весьма неприятны!
Различие
в предельной скорости разных тел одинаковой формы, но разных размеров
объясняется зависимостью сопротивления среды от размеров тела. Оказывается,
что сопротивление приблизительно пропорционально площади поперечного сечения
тела. При одной и той же форме тела из данного материала площадь его
поперечного сечения, а значит и сила сопротивления воздуха, растет с
увеличением размеров медленнее, чем сила тяжести: площадь поперечного сечения
растет как квадрат размера, а сила тяжести — как куб размера тела. Например,
чем больше авиационная бомба, тем больше ее предельная скорость и с тем большей
скоростью она достигает земли.
Рис. 93. Сопротивление воздуха при
движении тела каплевидной формы в 30 раз меньше сопротивления при движении
круглой пластинки и в 5 раз меньше сопротивления при движении шарика того же
поперечного сечения
Наконец,
сопротивление воздуха сильно зависит и от формы тел (рис. 93, см. также §
190). Фюзеляжу самолета придают специальную обтекаемую форму, при которой
сопротивление воздуха мало. Наоборот, парашютист должен достигать земли с
небольшой скоростью. Поэтому парашюту придают такую форму, при которой сопротивление
воздуха его движению было бы возможно больше. Предельная скорость падения
человека с раскрытым парашютом составляет 5—7 м/с. Достижение предельной
скорости парашютистом происходит иначе, чем при простом падении тела. Вначале
парашютист падает с закрытым парашютом и ввиду малого сопротивления воздуха
достигает скорости в десятки метров в секунду. При раскрытии парашюта сопротивление
воздуха резко возрастает и, превосходя во много раз силу тяжести, замедляет
падение до предельной скорости.
Сопротивление
воздуха изменяет и характер движения тел, брошенных вверх. При движении тела
вверх и сила земного притяжения, и сила сопротивления воздуха направлены вниз.
Поэтому скорость тела убывает быстрее, чем это происходило бы в отсутствие
воздуха. Вследствие этого тело, брошенное вверх с начальной скоростью , не достигает
высоты (как это было бы
при отсутствии сопротивления) и уже на меньшей высоте начинает падать обратно.
При падении сопротивление воздуха уменьшает нарастание скорости. В результате
тело, брошенное вверх, всегда возвращается назад с меньшей скоростью, чем оно
было брошено. Таким образом, при падении на землю средняя скорость движения
меньше, чем при подъеме, и поэтому время падения на землю больше времени
подъема.
Влияние
сопротивления воздуха особенно велико при больших скоростях (так как сила
сопротивления быстро растет со скоростью). Так, например, при выстреле из винтовки
вертикально вверх пуля, вылетающая с начальной скоростью 600 м/с, должна была
бы в отсутствие воздуха достичь высоты, равной
В
действительности пуля достигает высоты только 2—3 км. При падении обратно
скорость пули возрастает лишь до 50—60 м/с. С этой предельной скоростью пуля и
достигает земли.
Что такое сила сопротивления в физике
Сила сопротивления — сила, которая возникает во время движения тела в жидкой или газообразной среде и препятствует этому движению.
Важно уметь отличать силу сопротивления от силы трения. Во втором случае рассматривается характер взаимодействия твердых тел друг с другом
Таким образом, трение можно наблюдать, когда какой-либо предмет перемещается по поверхности другого. Вектор этой силы будет направлен в противоположную сторону направления движения.
Для того чтобы рассчитать силу сопротивления необходимо умножить коэффициент сопротивления материала на силу, провоцирующую перемещение этого предмета.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут
Примечание
В качестве примера силы сопротивления можно рассмотреть движение поезда. Воздух, окружающий состав, замедляет скорость его перемещения, то есть возникает сила сопротивления.
От чего зависит в механике и динамике
Сила сопротивления зависит от нескольких факторов. На ее величину оказывают влияния следующие характеристики:
- Особенности среды и показатели ее плотности, к примеру, жидкость обладает большей плотностью, чем газообразное вещество.
- Форма тела, так как предметы, обладающие обтекаемыми вытянутыми вдоль направления движения формами подвержены меньшему сопротивлению, чем тела с множеством плоскостей, расположенных перпендикулярно движению.
- Скорость перемещения тела.
Силу сопротивления можно наблюдать опытным путем. К примеру, если предмет переместился на величину пути l , когда на него воздействует сила сопротивления, обозначение которой представлено, как \($$F_{r}$$\), затрачивается работа, которую можно рассчитать по формуле:
\($$A=F_{r}\times l$$\)
В случае, когда площадь поперечного сечения движущегося предмета равна S, он будет сталкиваться с частицами, объем которых составляет Sl. Полную массу этих частиц можно представить, как \($$\rho_{ a}\times Sl$$\). Если частицы полностью увлекаются телом, они приобретают скорость V. Кинетическую энергию можно рассчитать по формуле:
\($$K=\frac{\rho_{ a}\times Sl\times V^{2}}{2}$$\)
Энергию создают внешние силы за счет своей работы с мощностью по определению силы сопротивления. Откуда, A=K. Таким образом,
\($$F_{r}=\frac{\rho_{ a}\times S\times V^{2}}{2}$$\)
В этом случае зависимость силы сопротивления от скорости перемещения объекта возрастает и становится пропорциональна ее второй степени. В отличие от силы внутреннего трения ее обозначают, как силу динамического лобового сопротивления.
Следует отметить, что теория, в которой частицы среды полностью увлекаются транспортируемыми телами, преувеличена. В условиях реального времени любой движущийся предмет обтекаем потоком, который снижает воздействие на него сил сопротивления. Поэтому при расчетах нередко используют коэффициент сопротивления С, обозначая силу лобового сопротивления формулой:
\($$F_{r}=C\times S\times \frac{\rho_{ a}\times V^{2}}{2}$$\)
Примеры решения задач
ПРИМЕР 1
Задание
Максимальная скорость автомобиля на горизонтальном участке дороги равна при максимальной мощности его равной P. Коэффициент лобового сопротивления автомобиля C, а наибольшая площадь сечения в направлении, перпендикулярном скорости S. Автомобиль подвергся реконструкции, наибольшую площадь сечения в направлении, перпендикулярном скорости уменьшили до величины , оставив коэффициент сопротивления без изменения. Считайте силу трения о поверхность дороги неизменной, найдите какова максимальная мощность автомобиля, если его скорость на горизонтальном участке дороги стала равна
Плотность воздуха равна .
Решение
Сделаем рисунок.
Мощность автомобиля определим как:
где — сила тяги автомобиля.
Считая, что автомобиль на горизонтальном участке дороги движется с постоянной скоростью, запишем второй закон Ньютона в виде:
В проекции на ось X (рис.1), имеем:
Силу сопротивления, которую испытывает автомобиль, двигаясь в воздухе, выразим как:
Тогда мощность автомобиля можно записать:
Выразим из (1.5) силу трения автомобиля о дорогу:
Запишем выражение для мощности, но с изменёнными по условию задачи параметрами автомобиля:
Учтем, что сила трения автомобиля о дорогу не изменилась, и примем во внимание выражение (1.6):
Ответ
ПРИМЕР 2
Задание | Какова максимальная скорость шарика, который свободно падает в воздухе, если известны: плотность шарика (), плотность воздуха (), масса шарика (), коэффициент сопротивления C? |
Решение | Сделаем рисунок.
Запишем второй закон Ньютона для свободного падения шарика: |
При движении любого предмета по поверхности или в воздухе возникают силы, препятствующие этому. Их называют силами сопротивления или трения. В этой статье мы расскажем, как найти силу сопротивления, и рассмотрим факторы, влияющие на нее.
Сопротивление движения в воздухе используется во время прыжков с парашютом. В результате возникающего трения между куполом и воздухом скорость движения парашютиста снижается, что позволяет без ущерба для жизни заниматься парашютным спортом.
Для определения силы сопротивления
воздуха
создайте условия, при которых тело начнет под действием силы тяжести двигаться равномерно и прямолинейно. Рассчитайте значение силы тяжести, оно будет равно силе сопротивления воздуха. Если тело движется в воздухе, набирая скорость, сила его сопротивления находится при помощи законов Ньютона, также силу сопротивления воздуха можно найти из закона сохранения механической энергии и специальных аэродинамических формул.
Средства воспроизведения сопротивления
Сопротивление тока: формула
Для определения меры электрического сопротивления используют:
- Магазин сопротивлений – специальный набор радиоэлементов различного номинала. Данные компоненты специально изготовлены таким образом, чтобы содержать эталонное сопротивление проводников. При подключении электропроводника с постоянным или переменным током к магазину сопротивления можно выбрать подходящий по величине резистор и получить на выходе определенное напряжение, которое затем можно измерить при помощи вольтметра;
- Катушка – устройство, которое работает по сходному с магазином принципу. При подключении на вход прибора можно при помощи имеющихся рычагов и переключателей отрегулировать величину сопротивления агрегата и получить на выходе требуемый вольтаж.
Разновидности сил сопротивления
Существует несколько типов силы сопротивления, отличающихся по характеру воздействия на движущиеся предметы.
Сила сопротивления качению
Сила сопротивления качению обозначается, как Pf. В данном случае сила определяется несколькими факторами:
- разновидность и состояние опоры, по которой перемещается объект;
- скорость движения тела;
- давление воздуха и другие параметры окружающей среды.
Состояние и тип опорной поверхности определяет величину коэффициента сопротивления качению, который обозначается f. Если в среде повышается температура, и возрастает давление, то данный показатель будет уменьшаться.
Сила сопротивления воздуха
Сила сопротивления воздуха или величина лобового столкновения Pв образуется в результате различных показателей давления. Данная характеристика напрямую зависит от интенсивности вихреобразования спереди и сзади движущегося предмета. Указанные параметры определяются формой перемещающегося тела.
Примечание
Большее влияние на силу сопротивления будет оказывать вихреобразование в передней части объекта. Если плоскостенную фигуру закруглить спереди и сзади, то получится снизить сопротивление до 72%.
Рассчитать силу лобового сопротивления можно по формуле:
\($$P=cx\times p\times F_{b}$$\)
сх — обтекаемость или коэффициент лобового сопротивления; p — плотность воздуха; Fв — площадь лобового сопротивления (миделевого сечения).
Во время поступательного движения масса объекта встречает сопротивление разгону, то есть ускорению. Найти данную силу можно с помощью второго закона Ньютона.
\($$Pj=m\times dVdt$$\)
где m выражает массу движущегося объекта, а \(dVdt\) обозначает ускорение центра масс.
Как найти трение
Определить силу сопротивления можно, если применить третий закон Ньютона. Для того чтобы предмет равномерно перемещался по опоре в горизонтальном направлении, к нему необходимо приложить силу, соизмеримой с силой сопротивления. Корректно рассчитать данные величины можно с помощью динамометра. Сила сопротивления будет прямо пропорциональна массе объекта. Более точные расчеты производятся с учетом u коэффициента, который зависит от следующих факторов:
- материал, из которого изготовлено опорное основание;
- материал, из которого состоит перемещаемое тело.
Рассчитывая силу сопротивления, используют постоянную величину g, равную 9,8 метров на сантиметр в квадрате. При этом если движение тела происходит на определенной высоте, на него оказывает воздействие сила трения воздуха. Данная величина зависит от скорости, с которой движется предмет. Искомая величина определяется с помощью следующей формулы только при условии, что предмет перемещается на небольшой скорости:
\($$F=V\times a$$\)
где V является скоростью перемещения тела, a — коэффициентом сопротивления среды.
Сила сопротивления при движении в вязкой среде
Замечание 1
Кроме сил трения при движении в жидких и газообразных средах возникают силы сопротивления среды, которые проявляются намного значительней, чем силы трения.
Поведение жидкости и газа по отношению к проявлениям сил трения не отличаются. Поэтому, приведенные ниже характеристики, относят к обоим состояниям.
Определение 1
Действие силы сопротивления, возникающей при движении тела в вязкой среде, обусловлено ее свойствами:
- отсутствие трения покоя, то есть передвижение плавающего многотонного корабля при помощи каната;
- зависимость силы сопротивления от формы движущегося тела, иначе говоря, от ее обтекаемости для уменьшения сил сопротивления;
- зависимость абсолютной величины силы сопротивления от скорости.