Водородные автомобили

Субсидии для авто на водороде

Конечно, вопросы стоимости инфраструктуры могут быть частично решены правительствами, которые в состоянии создать стимулы: предоставлять покупателям различные скидки или даже обеспечивать людей заправкой водородом бесплатно.

Это уже происходит в Японии – в стране, где беспокоятся о своей энергетической безопасности (особенно после ядерной катастрофы на Фукусиме).

Правительство Японии очень помогает населению субсидиями на покупку водородных автомобилей (сумма субсидии составляет почти 27 000 долларов) в рамках программы, для которой выделят 400 млн. долларов из государственного бюджета.

С помощью данной программы планируется помочь населению Японии закупить 6 000 частных транспортных средств, работающих на водороде.

Между тем в США комитет энергетики штата Калифорния пообещал 205 млн. долларов для обеспечения почти 70 АЗС водородным топливом к концу следующего года. В Калифорнии также выплачивают 12 000 долларов тем, кто покупает автомобили на водороде.

дороже,готовы

Британское правительство, со своей стороны, пообещало 17 млн. долларов для постройки еще 15 водородных станций на Юго-Востоке страны.

Давайте рассмотрим некоторые из причин, в том числе серьезные опасности, которые могут быть связаны с водородной энергетикой.

Первый минус. -Да, это правда, водород самый распространенный элемент во всей Вселенной, однако на самой Земле в чистом виде газообразный водород найти сегодня практически невозможно. Этот газ необычайно легок. Поэтому в чистом виде он очень быстро (почти моментально) поднимается к верхним слоям атмосферы и уходит дальше в безвоздушное пространство.

В подавляющем большинстве случаев атомы водорода связаны с другими типами атомов в разнообразные молекулы, которые образуют после этого различные вещества. Вот например, H2O, более известная нам всем, как вода, или тот же СН4, также известный, как метан, оба эти элемента содержат в себе молекулы водорода.

Поэтому получается, прежде чем водород может быть использован в качестве альтернативного топлива, он сначала должен быть извлечен из этих самых веществ, а затем уже переведен в особое состояние, то есть как правило, в тот самый сжиженный и необходимый нам вид.

На все эти действия потребуются очень большие затраты энергии, а значит и коллосальные материальные средства. К примеру, для извлечения H2 (водорода) из воды с помощью электролиза требуется большое количество электроэнергии, что на данный момент просто нерентабельно. По разным подсчетам стоимость 1 литра сжиженного водорода составляет примерно от $2 долларов и до 8 Евро, в зависимости от способа его добычи.

Следующим звеном в цепочке под номером два идет: -отсутствие развитой структурной сети самих водородных заправок. Стоимость оборудования для таких заправочных станций в разы выше, чем у обычной АЗС. Существует различные проекты для водородозаправляющих станций, как от классических АЗС, так и до частных минизаправок. При сегодняшнем развитии смежных технологий все эти проекты чрезвычайно дороги и относительно опасны.

Развитие сети водородных заправок дело будущих десятилетий. Именно столько должно пройти времени, чтобы стоимость их постройки была целесообразной.

Существуют ли опасности, которые связаны с наличием большого количества чистого водорода скопившегося в одном месте? Безусловно существует. Когда жидкий водород хранится в резервуарах, это безопасно, но стоит ему просочится в окружающую среду, как он моментально превращается в гремучую смесь (гремучий газ).

В плюсах мы уже отметили, что водородом можно заправлять автомобили с обычным двигателем внутреннего сгорания (в домашних условиях не повторять! ОПАСНО!!!), но однако, этот обычный двигатель проработает на чистом водороде не долго. Он быстро сломается. При сгорании водородной смеси выделяется большее количество тепла, чем при сгорании того же бензина, а это может привести под высокими нагрузками к перегреву клапанов и поршней двигателя. Помимо этого ,под воздействием высоких температур H2 (водород) может влиять на саму смазку в двигателе и на материалы из которых сделан мотор, что непременно приведет к повышенному износу рабочих частей агрегата.

Отсюда мы делаем неутешительный вывод: -без очень дорогостоящей модернизации ДВС, которая должна приспособить мотор к работе на этом виде горючего, использование водорода как топлива не приведет к ожидаемому результату.

А пока все построенные объекты для заправки автомобилей водородом скорее всего используются в качестве рекламного хода и для демонстрации возможностей будущего.

Топливные ячейки стоят на третьей позиции в качестве минусов. Эти вроде безопасные элементы тоже не избежали тернистого пути метода проб и ошибок. Как и с теми же заправочными станциями и с теми же двигателями ДВС, все упирается именно в стоимость применяемых на данный момент технологий.

Приведем один пример. В качестве катализатора в этих топливных элементах используется на данный момент платина. А теперь представляете друзья стоимость такой детали?!

Некоторые технологии для ДВС настолько дороги, что проще купить жене платиновое кольцо с бриллиантом, чем заменить сломавшуюся деталь в водородном автомобиле.

Хорошая новость в этом достаточно дорогом деле заключается в том, что ученные непрерывно день-изо-дня ищут замену этому драгоценному металлу. Разрабатываются все новые технологии, проходят тестирования новые современные материалы. В конечном итоге ученые надеются, что «топливные элементы будущего» могут существенно снизить себестоимость сегодняшних элементов в 1000 раз и более.

Проблемы водородных автомобилей

Компания Toyota утверждает, что Mirai выделяет всего 100 мл воды на примерно 2 км пути. Подсчитано, что, например, в Великобритании все автомобили проезжают около 488 млрд. км в год. Это означает, что если бы каждый автомобиль был бы Toyota Mirai, то утечка от всех автомобилей составила бы 3 млрд. л воды и водяного пара каждый год.

Для сравнения: такого огромного количества воды хватило бы, чтобы заполнить около 12 000 плавательных бассейнов, предназначенных для проведения олимпийских игр.

Конечно, вода сама по себе является безобидной для нас всех субстанцией, но только не для наших дорог во время морозов. Представьте себе автомагистраль с интенсивным движением в середине зимы, и с каждого транспортного средства выливается 1 литр воды каждые 20 км. Ведь вся эта вода превратится в каток в считанные минуты. А если вода выбрасывается в виде пара, то предсказуемый результат — туман.

По сообщениям, в городе Рейкьявик, Исландия, пассажиры автобусов на водородном топливе тревожатся о количестве водяного пара, который выходит только из одного автобуса из множества.

Таким образом, хотя водородные автомобили имеют массу преимуществ (например, беззвучность и экологичность), существует много проблем с ними, которые требуют решения, иначе такие машины будут не востребованы.

Возможно, водородные топливные элементы станут успешно использоваться, например, вилочными погрузчиками, работающими в закрытых помещениях, где бензиновый или дизельный дым особенно нежелательны.

Так что еще предстоит выяснить, будем ли мы все наслаждаться водородными семейными автомобилями в следующем десятилетии или нет…

Авто на водороде

  • Тойота, приручившая водород, — Fuel Cell Sedan — это комфорт и вместительность стандартной модели. Для того чтобы увеличить пространство в салоне и багажнике, сжатые резервуары водорода расположены в полу автомобиля. Предназначена машина для пяти пассажиров, цена составит 67500 $.
  • Технологии космоса в обычной жизни. BMW Hydrogen 7 уже доказал свои возможности на практике, порядка ста автомобилей BMW Hydrogen 7 были тестированы выдающимися деятелями культуры, политики, бизнеса и средств массовой информации. Опыт испытания в реальных условиях показал, что переход на водород полностью совместим с комфортом, динамикой и безопасностью, которые вы могли бы ожидать от BMW. Авто можно переключать с одного вида топлива на другой. Максимальная скорость 229 км/ч.
  • Генератор энергии Honda FCX Clarity. По словам разработчиков, можно подключить к трансформатору и снабжать электричеством все бытовые приборы. Баки с водородом находятся под задними сидениями, а после полной заправки топлива ей хватит на 500 км. Цена от 62807 $.
  • Часть автобусов MAN работает на водороде.

Большой бизнес

В Северной Америке у сырьевого лобби слишком высокая инерция, что не позволяет мигом перестроиться даже части экономики США и Канады. Но тренд нарастает и переход к 2027–2033 годам на полностью альтернативные виды топлива в Новом и Старом свете, стартовавший 5 лет назад, уже набирает обороты.

24 июня Калифорнийский совет по воздушным ресурсам утвердил самый жёсткий мандат страны в отношении использования чистого воздуха для грузовых автомобилей. По сути, совет распорядился, чтобы автопроизводители начали продавать автомобили с нулевым уровнем выбросов в 2024 году. К этому году электрический парк должен составить 4000 грузовиков. К 2030 году в Калифорнии планируется продать 100 000 машин, а к 2035 году – 300 000.

После дождя законодательных инициатив, грядки стартапов, даже в США не выглядят одинокими цветниками.

В компании Nikola Motors удалось планово пришить продажи машин к развитию заправок. Сейчас уже намерены построить новых 37 водородных заправок в Калифорнии, увеличив их число до 100. В Аризоне 3 марта объявила даже о создании акционерного общества и слиянии с компанией VectoIQ, состоящей из ветеранов Mitsubishi Motors и GM под патронажем бывшего вице-председателя Стива Гирски. Она совладеет космической компанией Virgin Galactic. Неудивительно что с 6 по 13 мая после открытия торгов на нью-йоркской фондовой бирже акции VectoIQ скакнули на 134,5%.

Ожидается, что во II квартале Nikola Motors уже будет внесена в список на бирже NASDAQ под названием NKLA. Тогда Nikola Motors может распоряжаться новыми инвестициями в размере $525 млн к имеющимся $525 млн, которые он собрал за три раунда финансирования (включая СП в Европе) на развитие выпуска водородных грузовиков. При этом инвестиции затронут всю линейку тягачей (на заставке) для определения наиболее привлекательных. Рыночная капитализация Nikola Motors составляет около $12 млрд, из которых 3,7 млрд приходится на долю основателя Тревора Милтона.

Интересно, что его главный конкурент – генеральный директор компании Tesla Inc. Элон Маск в одном интервью отвергал водородную технологию и даже назвал их «дурацкими ячейками». Его можно понять: он безальтернативно вложился в электромобили с батарейным питанием и тащит на себе космическую программу. А Nikola Motors является пока одной из немногих компаний, которые нацелились на использование больших водородных установок.

Использование водорода для сжигания

Водород также можно использовать в качестве прямой замены бензина или дизельного топлива в специализированном или преобразованном двигателе внутреннего сгорания. В этом случае газообразный водород под давлением впрыскивается непосредственно в камеру сгорания двигателя, и сгорание происходит как обычный ДВС.

Такое использование водорода не распространено, так как он не такой плотный, как бензин. Но при сжигании водорода выделяется меньше вредных веществ, а основным побочным продуктом выхлопа является вода. Также выделяется меньше токсичных газов NOx, выделяемых двигателем.

Производство водорода

Еще одной проблемой таких машин является производство водорода,

так как это довольно проблематичное мероприятие.

Наиболее распространенный метод называется паровой реформинг.

Он заключается в том, что пар смешивается с природным газом, затем нагревается до определенной температуры с последующим добавлением катализатора, такого как никель, в результате чего получается водород и моноксид углерода (ядовитый газ). Около95 % водорода в мире производится этим путем.

К сожалению, это не экологически чистый процесс, потому что результатом являются и побочные продукты.

Таким образом, хотя сам по себе водород в автомобиле не загрязняет окружающую среду,производство данного топлива будетзагрязнять наш с Вами воздух.

В результате даже защитники автомобилей на водородном топливе признаются, что производство водорода будет загрязнять окружающую среду в лучшем случае как автомобили на бензиновых двигателях, а в худшем – значительно больше.

Ученые сейчас разрабатывают«зеленые методы» производства водорода, такие как извлечение водорода из кукурузной шелухи или использование ветряных турбин для питания электролиза воды.

В настоящее время не было

придумано экологически чистых и достаточно эффективных методов производства водородного топлива для каждодневной заправки миллионов автомобилей.

Конечно же, поклонники автомобилей, работающих на водородном топливе, непреклонны: они уверены, что мы должны продвигаться вперед, ибо наше будущее зависит от работы автотранспорта, который не будет причинять ущерб нашей планете.

Способы добычи водорода в качестве использования в виде энергии

Водород не является чистым ископаемым вроде нефти и угля, нельзя так просто взять выкопать и использовать его. Для того, чтобы он стал энергией, его нужно раздобыть и испоьлзовать некоторую энергию для его переработки, после чего этот самый распространенный химический элемент станет топливом.

Практикуемым на данный день способом добычи водородного топлива является так называемый «паровой риформинг». Чтобы переработать обычный водород в топливо, используются углеводы, которые состоят из водорода и углерода. При химических реакциях, при определенной температуре выделяется огромное количество водорода, который и можно использовать в качестве топлива. Данное топливо не будет выделять вредных веществ в атмосферу во время эксплуатации, однако во время его добычи выделяется огромное количество углекислого газа, который плохо влияет на экологию. Поэтому данный метод хоть и является эффективным, он не должен браться в основу по добыче альтернативного топлива.

Есть двигатели, для которых подойдёт и чистый водород, они сами перерабатывают данный элемент в топливо, однако, как и при предыдущем способе, здесь также наблюдается огромное количество выбросов углекислого газа в атмосферу.

Очень эффективным способом добычи альтернативного топлива в виде водорода является электролиз. Электрический ток пускают в воду, вследствии чего она распадается на водород и кислород. Данный метод является дорогим и хлопотным, однако экологически чистым. Единственным отходом от получения и эксплуатации топлива является кислород, который лишь позитивно повлияет на атмосферу нашей планеты.

А самым перспективным и дешёвым способом получения водородного топлива является переработка аммиака. При необходимой химической реакции аммиак распадается на азот и водород, при чём водорода получается в трижды больше, ежели азота. Данный метод лучше тем, что он немного дешевле и менее затратный. Кроме того, аммиак легче и безопаснее транспортировать, а по прибытию к месту доставки, следует запустить химическую реакцию, выделить азот и топливо готово.

Водород для тяжеловеса

Два последних года запомнились важными «водородными» новостями. Поговорим об известном проекте электрического грузовика Nikola One, представленного американской компанией Nikola Motor в 2016 году. История эта получила продолжение.

Итак, Nikola One. Грузовой электрокар, тягач с электроприводом и батареей емкостью 320 кВт·ч. На борту – собственная автономная электростанция. Электроэнергию вырабатывает система водородных топливных элементов.

Nikola One для американского рынка

Как заявил производитель, этот грузовик имеет автономный запас хода почти 1200 миль, по-нашему – 2000 км. И движется он с нулевой эмиссией отработавших газов – их просто нет, этих газов.

Изначально его планировали оснащать «удлинителем хода» – газотурбинным бортовым генератором, но потом все же остановились на ТЭ. Правда, для некоторых рынков возможность использования газотурбинного генератора все же оставили.

Заявленные характеристики тягача существенно превышают показатели большинства электромобилей, но есть и сомнения – хватит ли энергии силовой установки для перемещения 35-тонных грузов? На этот вопрос ответит практика эксплуатации. Но тут возникает еще одна проблема: где брать водород в достаточном количестве для парка Nikola One?

Компоновка тягача Nikola на водороде: 1 – система охлаждения; 2 – два электрических
мотор-редуктора для привода передних колес; 3 – блок высоковольтной и управляющей
электроники; 4 – тяговая батарея; 5 – ресивер пневматической тормозной системы и бак
системы охлаждения батареи; 6 – электрохимический генератор (топливные элементы
на 300 кВт); 7 – баки с водородом; 8 – задний мост с электродвигателем; 9 – седло
Фото: https://www.automobile-propre.com

Главный исполнительный директор (Chief Executive Officer) компании Nikola Motors Тревор Милтон (Trevor Milton) заявил, что концепция электрического грузовика Nikola One будет опираться на собственную водородную инфраструктуру. Она раскинется по всей территории Соединенных Штатов, захватив частично и Канаду. Компания намерена строить электролизные установки и транспортировать водород на заправки.

Не так давно Nikola Motor обрела партнера – компанию Nel ASA. Эта фирма поставляет для Nikola оборудование, помогая создать самую большую водородную топливную сеть в мире. Достаточно сказать, что в ней будут действовать 16 электролизных станций, работающих по технологии H2Station.

Уже знакомый нам г-н Тревор Милтон заявил, что заказ на поставку первых двух станций на основе щелочных электролизеров компания Nel ASA уже выполняет. Остальные 14 станций получат путевку в жизнь в ближайшее время.

Скотт Перри, один из ведущих специалистов Nikola Motor, рассказал, что компания Nel ASA поставляет водород в более чем 80 стран с 1927 года. «Мы уверены, что с таким опытным партнером наш проект будет успешным», – с оптимизмом заключил он.

Первоначально каждая станция будет производить до 8 т водорода в день. Однако объем выпуска может быть увеличен до 32 т в день. Кстати, каждый грузовик Nikola ежедневно будет потреблять около 50–75 кг водорода.

Интересная подробность: Nikola Motor намерена предоставлять свои заправки всем водородным транспортным средствам, а не только грузовикам собственной марки.

Прошло немного времени, и компания Nikola заявила, что будет производить не один, а два тягача – Nikola One и Nikola Two. Вторая модель отличается в первую очередь кабиной. Если у Nikola One имеется спальный отсек, то Nikola Two оснащен лишь компактной кабиной для перевозок, но не для отдыха.

С точки зрения энергетики Nikola Two не отличается от Nikola One. За кабиной находятся баллоны с водородом для питания электрохимического генератора. Он вырабатывает электрическую энергию для мотор-редукторов суммарной мощностью более 1000 л. с. По информации производителя, разгон до 60 миль/ч занимает не более 30 секунд, а пробег на одной заправке водородом составляет 1200 миль. Заправка же займет не больше 15 минут.

Nikola Two также ориентирован на американский рынок

В конце ноября 2018 года компания представили третью модель водородного грузовика. Она так и называется – Nikola Tre («три» по-норвежски). Если Nikola One и Nikola Two адресованы американскому рынку, то бескапотный Nikola Tre будет работать в Европе.

Nikola Tre для европейского рынка

Технические характеристики Nikola Tre практически не отличаются от двух первых моделей. Силовая установка мощностью от 500 до 1000 л. с., крутящий момент до 2000 Нм, запас хода до 1200 миль, продолжительность заправки примерно 20 минут.

Химические свойства

Молекулы водорода Н₂ довольно прочны, и для того, чтобы водород мог вступить в реакцию, должна быть затрачена большая энергия:

Н2=2Н — 432 кДж

Поэтому при обычных температурах водород реагирует только с очень активными металлами, например с кальцием, образуя гидрид кальция:

Ca + Н2 = СаН2 и с единственным неметаллом — фтором, образуя фтороводород:

F2+H2=2HF

С большинством же металлов и неметаллов водород реагирует при повышенной температуре или при другом воздействии, например при освещении.

Он может «отнимать» кислород от некоторых оксидов, например:

CuO + Н2 = Cu + Н20

Записанное уравнение отражает реакцию восстановления — процесс, в результате которого от соединения отнимается кислород; вещества, отнимающие кислород, называются восстановителями (при этом они сами окисляются).

Реакция восстановления противоположна реакции окисления.

Обе эти реакции всегда протекают одновременно как 1 процесс: при окислении (восстановлении) одного вещества обязательно одновременно происходит восстановление (окисление) другого.

N2 + 3H2 → 2 NH3

С галогенами образует галогеноводороды:

F2 + H2 → 2 HF, реакция протекает со взрывом в темноте и при любой температуре, Cl2 + H2 → 2 HCl, реакция протекает со взрывом, только на свету.

С сажей взаимодействует при сильном нагревании:

C + 2H2 → CH4

Оксиды восстанавливаются до металлов:

CuO + H2 → Cu + H2O Fe2O3 + 3H2 → 2 Fe + 3H2O WO3 + 3H2 → W + 3H2O

Так каковы же преимущества водорода как источника топлива?

Ну, километр за километром, автомобиль значительно легче, чем батарея. В то время как Tesla Model S обещает 627 километров от батареи весом примерно 500 кг, водород, который заполняет бак Mirai, весит всего 5,6 кг и будет двигать автомобиль на протяжении официальной дальности хода в 643 километров. Это означает, что в целом Mirai опрокидывает стрелку весов на 1900 кг — наравне с автомобилем с двигателем внутреннего сгорания аналогичного размера.

Toyota говорит, что Mirai потребляет 0,89 кг водорода каждые 100 км, в Европе заправка водородом стоит около 1000 рублей за килограмм. Наш тест-драйв охватывал по большей части водительский опыт, так что большинство водителей не будет подвергать автомобиль таким нагрузкам, и Mirai потреблял у нас 1,17 кг на 100 км — это примерно 5600 рублей за 482 км реального пробега. Это примерно та же стоимость, что и для бензинового автомобиля.

Конечно, заправка водородного автомобиля представляет собой камень преткновения для технологии. В то время как точки зарядки EV продолжают появляться с неумолимой скоростью, общее количество водородных заправочных станций в составляет считанные единицы.

Чтобы создать водород, его нужно отделить от воды путем электролиза, сжать и сохранить и, если этот процесс не выполняется на месте, транспортировать его на заправочную станцию не самый энергоэффективный процесс. Классический же электромобиль эффективно забирает электричество из общедоступной сети. 

Конечно, есть и другие факторы, такие как источники сырья, но автомобили на топливных элементах также еще нуждаются в литии.

Пять с половиной килограмма водорода, как мы выяснили, проходят долгий путь, в итоге в автомобиле нужно приспособить необходимые резервуары для их хранения, что является сложной задачей. У «Мираи» резервуаров три. Самый большой монтируется внутри автомобиля в полу, что создает высокий центральный туннель (как трансмиссионный туннель). Другие баки расположены впереди и сзади, придавливая салон с обоих концов. В результате заднее пространство для ног едва ли лучше, чем у большинства супермини, а багажник предлагает всего 321 литр пространства — это в автомобиле с кузовом, похожим на Audi A7.

В остальном салон хорошо отделан и набит техникой. Там есть огромный экран информационно-развлекательной системы, цифровая приборная панель и 10,1-дюймовый проекционный дисплей. Все четыре сиденья обогреваются и охлаждаются, а задние пассажиры получают откидной центральный подлокотник, в котором размещены элементы управления развлекательными и климатическими функциями.

Несмотря на то, что новый автомобиль более мощный, более роскошный и лучше оборудованный, чем предыдущий, цены теперь начинаются от 4,99 млн. рублей — на 1 млн. рублей дешевле, чем первый Mirai. Наш авто премиум-класса стоит 6,49 млн. рублей. Это все еще большие деньги, но это цена, за то, чтобы быть ранним последователем водородной технологии (или наоборот, поздним последователем).

Модель: Toyota Mirai Design Premium Pack
Цена: 6,49 млн. рублей
Двигатель: Одиночный электрический двигатель
Накопитель энергии: Полимерный электролит топливный элемент плюс литий-ионный аккумулятор
Мощность/крутящий момент: 180 л.с./850 Нм
Коробка передач: Одна скорость, задний привод
Разгон 0-100 км/ч: 9,0 секунды
Максимальная скорость: 173 км/ч
Дальность хода: 643 км
В продаже: Сейчас

Использованы материалы: Autoexpress UK

Последние материалы

Сколько будет стоить заправка для водородных авто

Рыночная стоимость водорода в Европе сейчас составляет около 9 евро за килограмм, что соответствует примерно 45 евро для полного бака автомобиля Toyota Mirai. При запасе хода в 500 км сумма получается на уровне 9 евро на 100 км. Если учитывать, что стоимость бензина на европейских заправках около 1,3-1,35 евро, потребление водородного авто примерно соответствует среднему расходу седана с бензиновым мотором 1,5-2 литра в комбинированном режиме.

С одной стороны, это не много – но только, если не сравнивать с электромобилями. При использовании электродвигателей владелец автомобиля Tesla Model S или Toyota Prius потратит около 2,5 евро на то же стокилометровое расстояние. Поэтому, пока цена на водород для автомобилей не снизилась хотя бы до 25-30 евро за полный бак, преимущество останется за электрокарами.

Какую машину выбрать

Водородные автомобили в среднем примерно в четыре раза дороже, чем электрические, кроме того, надо учитывать, что более широкое, по сравнению с водородными, распространение электрических автомобилей увеличивает вероятность приобретения подержанного электрического автомобиля по более выгодной цене. Комплектация и сборка водородного автомобиля более сложная, в результате чего его обслуживание также становится дороже, чем у электрического автомобиля.

Эффективность электрического автомобиля в примерно три раза более высокая, чем у водородного, более того, сама по себе эффективность водородного автомобиля довольно низкая, всего около 25-35%, в то время как эффективность электрического автомобиля составляет 70-90%. Водородный автомобиль потребляет в 2-3 раза больше электричества для преодоления того же расстояния, которое может преодолеть электрический автомобиль на аккумуляторе. Можно сделать вывод, что дружественный для окружающей среды способ получения необходимого для обеспечения работы водородного автомобиля электричества с помощью водорода на самом деле означает большие расходы и низкую эффективность

А если еще и принять во внимание, что в Латвии имеется только одна заправочная станция для заправки водородом, то станет понятно, что сегодня у нас практически нет возможности обслуживать водородный автомобиль

Станции заправки водородом уже несколько лет работают в США, а это указывает на то, что со временем, с развитием инфраструктуры и снижением расходов, спрос на водородные автомобили может возрасти и в Латвии. 177 станций заправки водородом уже работают в Европе, большая их часть – 87 – находятся в Германии. Второе место по распространенности станций заправки водородом занимает Франция со своими 26 станциями, здесь планируется построить еще 34 станции.

Но в настоящее время продолжается победное шествие электрического автомобиля – эти машины предлагают своим пользователям дружественный окружающей среде способ передвижения, в Латвии есть достаточно много публичных пунктов зарядки, на которых электрический автомобиль можно зарядить сравнительно быстро. Электрические автомобили выгодны в содержании – у них сравнительно недорогое обслуживание (по сравнению с водородными и простыми автомобилями), кроме того, их владельцам предлагаются налоговые скидки и другие виды государственных компенсаций (как в Латвии, так и в других местах мира).

Плюсы и минусы авто, работающих на водороде

Среди основных преимуществ водородомобилей можно отметить:

  • высокую экологичность, заключающуюся в отсутствии большинства вредных веществ в выхлопах, характерных для работы бензинового двигателя, – углекислого и угарного газа, окиси и диоксидов серы, альдегидов, ароматических углеводородов;
  • более высокий КПД, по сравнению с бензиновыми авто;

В целом авто имеет амбиции покорить весь мир

  • меньший уровень шума от работы двигателя;
  • отсутствие сложных, ненадёжных систем топливоподачи и охлаждения;
  • возможность использования двух видов топлива.

Кроме того, машины, работающие на ВДВС, имеют меньший вес и больше полезного объёма, несмотря на необходимость установки баллонов для топлива.

К недостаткам водородомобилей можно отнести:

  • громоздкость силовой установки при использовании топливных элементов, снижающей маневренность автомобиля;
  • высокую стоимость самих водородных элементов из-за входящих в их состав палладия или платины;
  • несовершенство конструкции и неопределённость в материале изготовления баков для водородного топлива;
  • отсутствие технологии хранения водорода;
  • отсутствие заправок водородом, инфраструктура которых очень слабо развита во всём мире.

Однако, с переходом к массовому выпуску авто, оснащённых водородными силовыми установками, большая часть этих недостатков наверняка будет устранена.

https://youtube.com/watch?v=kECJOXqY-yw

Заправка – быстро, но очень проблематично

Процесс дозаправки происходит как и в обычных автомобилях – надо открыть лючок топливного бака и вставить специальный «пистолет» для заправки бака водородом. Примечательно, что заполнить бак можно лишь за 3-5 минут (в зависимости от объема), а это гораздо быстрее, чем даже самая быстрая зарядка электрического автомобиля (примерно полчаса).

Это более удобно, но есть одна очень и очень большая проблема: найти заправку, где продается водород сегодня практически нереально. Например, даже в Великобритании работает лишь 4 общественные станции, предназначенные для заправки водородных транспортных средств.

По прогнозам, в Великобритании количество таких заправок до 2020 года увеличится до 65, но даже в столь развитой стране это будет очень маленькая сеть. На сегодняшний день в Великобритании работает свыше 8000 обычных АЗС. Ни о каком сравнении не может быть и речи. Чего уж говорить о России…

Немного о доверчивости и наивности

Некоторые предприимчивые дельцы предлагают на продажу водородный генератор на авто. Рассказывают про обработку лазером поверхности электродов или про уникальные секретные сплавы, из которых они сделаны, специальные катализаторы воды, разработанные в научных лабораториях мира.

Всё зависит от способности мысли таких предпринимателей к полёту научной фантазии. Доверчивость может сделать вас за ваши же средства (иногда даже не малые) владельцем установки, у которой через два месяца эксплуатации разрушатся контактные пластины.

Если уж вы решили таким способом экономить, то лучше собирать установку самостоятельно. По крайней мере, не на кого потом будет пенять.

С экранов телевизоров нам заявляют, что количество нефти стремительно уменьшается, и вскоре бензиновые машины отойдут в далёкое прошлое. Вот только это не совсем верно.

Действительно, количество разведанных запасов нефти не очень велико. В зависимости от степени потребления их может хватить на период от 50 до 200 лет. Но в этой статистике не учитываются до сих пор неразведанные места нефтедобычи.

В действительности нефти на нашей планете более чем достаточно. Другой вопрос, что сложность её добычи постоянно возрастает, а значит, растёт и цена. К тому же нельзя списывать со счетов экологический фактор. Выхлопные газы сильно загрязняют среду и с этим нужно что-то делать.

Современная наука создала множество альтернативных источников энергии вплоть до двигателя ядерного распада в ваших машинах. Но большинство из этих технологий пока что представляют собой концепты без возможности реального применения. По крайней мере, так было до недавнего времени.

С каждым годом машиностроительные компании выпускают всё больше машин, работающих на альтернативных источниках питания. Одним из самых эффективных решений в данном контексте является водородный двигатель от бренда «Тойота». Он позволяет полностью забыть про бензин, делая автомобиль экологичным и дешёвым транспортом.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *