Редуктор заднего моста: устройство, разборка и ремонт

Редукторные передачи

Данная группа составляющих различается по принципу соединения зубцов ведущей и ведомой шестерен. Благодаря использованию различных вариаций, выделяют четыре группы редукторных передач в автомобилях:

  • Коническая – конические шестерни в числе двух штук располагаются перпендикулярно друг другу. Эта схема используется в задне- и полноприводных автомобилях.
  • Цилиндрическая – две цилиндрические шестерни сообщаются между собой параллельно. Эта схема используется в переднеприводных автомобилях.
  • Гипоидная – шестерни располагаются по отношению друг к другу под углом 45 градусов. Эта схема используется в задне и полноприводных автомобилях.
  • Червяная – сообщающиеся один винт с червячной ведомой шестерней.

Цилиндрический редуктор

Цилиндрический редуктор — это одна из самых популярных разновидностей редукторов. Он, как и все редукторы, служит для изменения скорости вращения при передачи вращательного движения от одного вала к другому.

Именно редукторный привод один из наиболее распространенных видов приводов современных механических систем общепромышленного применения. Более ста лет назад перед нашей промышленностью стояла задача обеспечить нужды страны в цилиндрических редукторах. С этим успешно справлялись открывающиеся заводы. В настоящее время выпуск качественной и надежной продукции обеспечивается мощной производственной базой. Сейчас производят различные типы продукцией: цилиндрический редуктор одно-, двух-, и трехступенчатый.

От работоспособности и ресурса цилиндрического редуктора во многом зависит обеспечение требуемых функциональных параметров и надежности машины в целом. Показатели долговечности и надежности элементов привода и, в частности, редукторов и мотор-редукторов, зависят от обоснованного выбора самого редуктора при проектировании машины, т.е. соответствия этого выбора действующей нормативной документации (НД). Неправильный выбор редуктора снижает его рыночную конкурентоспособность, нанося ущерб производителю, и может привести к значительным экономическим потерям потребителя машиностроительной продукции из-за внеплановых простоев, роста ремонтных затрат и пр. Одно из важнейших требований обеспечения конкурентоспособности цилиндрического редуктора — наилучшее соответствие его паспортных характеристик реальным эксплуатационным условиям нагружения и работы привода машины.

Редуктор (от лат. reductor — отводящий назад, приводящий обратно) — это механизм, входящий в приводы машин и служащий для снижения угловых скоростей ведомого вала с целью повышения крутящих моментов. В редукторах применяют зубчатые передачи, цепные передачи, червячные передачи, а также используют их в различных сочетаниях — червячные и зубчатые, цепные и зубчатые и т.п. Существуют комбинированные приводы, в которых редуктор компонуют с вариатором. Редуктор используют в транспортных, грузоподъёмных, обрабатывающих и др. машинах. Главными характеристиками редукторов служат коэффициент полезного действия (КПД), мощность, передаточное отношение, угловые скорости валов, количество ступеней и передач и др.

Ещё в глубокой древности применялся принцип редукторов — увеличение приложенной силы или тяги. Эта идея механической передачи приложенного усилия восходит от изобретения колеса. Каким образом функционирует простая передача? Два колеса соприкасаются с собой ободами. Большое колесо делает оборотов меньше, по сравнению с меньшим. Когда колесо поменьше — становится ведущим, то крутящийся момент передачи получается больше, потеряв в скорости угловой. Для подъемов огромных грузов подобная передача применяется часто. Установив зубчатые колёса вместо гладких, получим передачу тяги и усилия более производительной. Вот так в человеческой жизни начали появляться редукторы. С появлением паровой машины возникла необходимость в передаче еще больших мощностей. Соответственно, потребовалось конструировать металлические редукторы. К 1850 г. ткацкие станки с механическим приводом были уже втрое производительнее ручных станков. Более дешевая энергия дала возможность повысить быстродействие станков, и это укрепило их экономическое преимущество. Паровой двигатель был достаточно мощным, чтобы приводить в движение несколько текстильных станков, и соответствующие станки приходилось размещать вокруг двигателя. Паровой двигатель также сделал возможным размещение производств не только у воды, а там, где были уголь, рабочие руки, рынки сбыта и транспорт. Новое время проводило и селекцию самых оптимальных конструкций зубчатых передач — тиражироваться начинали именно те, что давали максимальный экономический эффект. К середине ХIX века, по-видимому, следует отнести появление первых серийных редукторов. Ну а при появлении во второй половине XIX века электрического привода, бензиновых и дизельных двигателей означало разработку редукторов с заданными параметрами. Зубчатые механизмы предназначались для передачи вращательного движения от высокооборотных двигателей и преобразования (снижения) его параметров. Даже самые первые электродвигатели и ДВС обладали скоростью и моментом, как правило, не подходящим для использования в технологическом процессе.

Существует много разновидностей редукторов и классифицируются они по типу механических передач: цилиндрический, червячный, конической — цилиндрический.

Рекомендации по выбору

Как выбирать редуктор вместо сломавшегося, на имеющуюся технику и при создании механизмов самостоятельно. Основным является мощность на выходном валу. Она рассчитывается на основании оборотов двигателя по передаточному числу.

Следует обратить на расположение валов, оно в цилиндрических моделях может быть в одну сторону.

Крепление осуществляется с помощью фланца непосредственно к валу двигателя и с помощью отверстий в подошве устанавливается на платформу.

В маркировке указано межцентровое расстояние между валами. Этот размер имеет конструктивное значение при установке узла и соединения его с двигателем и валом рабочего механизма.

Следует посмотреть, какая пара в редукторе первая, ее передаточное число, зацепление. Выбор редуктора включает в себя и расположение валов в пространстве. Они могут располагаться под прямым углом и быть в разных плоскостях. Тип подшипников указывается в технической документации. Там же таблица сроков эксплуатации разных узлов.

При проектировании машины, подбор червячного редуктора выполняется по мощности и расположении зацепления. При нижнем зацеплении пара хорошо смазывается, не требует дополнительного охлаждения и способна работать длительно время

Следует обратить внимание на рабочий режим. Узел не всегда способен работать по несколько часов непрерывно

Червячное соединение быстро перегревается.

Особенности установки редукторов на полноприводных автомобилях

На переднем и заднем мосту полноприводных автомобилей должны быть установлены редукторы с одинаковым передаточным отношением, так как в противном случае становится невозможной эксплуатация машины при включенной блокировке межосевого дифференциала.

Причины появления неисправностей

Редуктор заднего моста – сложный механизм, состоящий из большого числа элементов. Неисправность любого из них может привести к выходу из строя всей системы.

  1. Перегруз системы. Одной из самых распространенных причин выхода из строя редуктора заднего моста является частое превышение положенной нагрузки на автомобиль. Например, при буксировке тяжелых транспортных средств или других грузов. Во время буксировки нагрузка на все элементы системы существенно увеличивается.
  2. Люфт в крестовинах. Многие автомобилисты отмечают, что через 5-6 лет эксплуатации авто в крестовинах появляется люфт. Это происходит из-за повышенной детонации двигателя, не отрегулированного зажигания и возникающих в связи с этим толчков и ударов. Поэтому в ходе ремонта проводят диагностику всех элементов ходовой части и не ограничиваются заменой передаточного механизма.
  3. Отсутствие смазки. Если в редукторе заднего моста нет масла, то его может заклинить, из-за перегрева. Могут лопнуть стальные части или сломаться зубья на шестеренках. Чтобы избежать подобных проблем, необходимо держать уровень смазки под контролем.
  4. Выработка подшипников, расположенных в «чулках». Эта неисправность появляется после долгих лет эксплуатации автомобиля. Она может спровоцировать искривление валов и разрушение зубчатых передач. В результате редуктор заднего моста будет не пригоден для ремонта.

Тестовые испытания автомобиля

Тест 1. Начните движение по шоссе со скоростью 20 км/ч, затем плавно увеличивайте скорость до 90 км/ч. Одновременно прислушивайтесь к звукам, которые издает автомобиль на разной скорости. Отпустите педаль управления дроссельной заслонкой и, не притормаживания, погасите скорость двигателем. Следите за изменением шума.

Тест 2. Во время движения со скоростью 100 км/ч переключите рычаг в нейтральное положение, выключите зажигание и свободно катитесь до полной остановки. Следите за изменением шума на разных скоростях замедления.

Тест 3. Автомобиль в неподвижном положении, на ручном тормозе. Запустите двигатель машины и, постепенно увеличивая обороты, прислушайтесь к возникшим шумам. Если вы слышите такой же шум, как при испытании №1, значит их источником является не редуктор, а другие узлы автомобиля.

Тест 4. Если шум, выявленный на испытании №1, не повторился на испытаниях №2 и №3, значит, он исходит от редуктора. Чтобы окончательно в этом убедиться, поднимите задние колеса машины, запустите двигатель и переключитесь на четвертую передачу. Это позволит вам убедиться, что источником шума является именно редуктор, а не подвеска или кузов.

Как избежать преждевременного выхода редуктора моста из строя? Нужно следить за уровнем масла, прислушиваться к шумам и стукам в автомобиле, визуально осматривать мост на предмет течи и внешних повреждений балки.

Редуктор автомобиля ВАЗ 2107 и его передаточное число

Если сравнивать редуктор от ВАЗ 2107, нужно отметить этот вид редуктора обеспечивает разгон на трассе на 10 километров в час, что ниже, чем редуктор, который стоит на ВАЗ 2106. Если поставить редуктор от автомобиля 2106 на автомобиль 2107, и спидометр и одометр будут показывать ошибку на эти 10 километров. Но! Устройство от 2106 будет меньше расходовать топлива.

Дело в том, что по паре шестерен в 2106 количество зубьев соотносится 43/11, в 2107 модели как 43/10.Хотя нужно заметить, что раньше он комплектовался редуктором, который стоял на модели 2103 с соотношением зубьев 10/40, затем поставили редуктор 43/10, а потом опять вернулись к 43/11. Поэтому передаточное число своего автомобиля лучше определить самому по существующим методикам.

Например, приподымаем заднюю часть авто на домкратах, установив нейтральную передачу при этом. Фиксируем одно из задних колес.

Затем проворачиваем вручную 10 оборотов карданного вала, считая при этом количество оборотов, которое сделает свободное от фиксации заднее колесо. Это количество оборотов делим на 10 и получаем передаточное число, которое дает задний редуктор. Ну или проще всего – есть технический паспорт, где все написано: какая модель редуктора автомобиля установлена.

Конечно, различие между редуктором от 2107 и редуктором от 2106 небольшое, но с механизмом от шестой модели, она более быстрая, но при этом немного проигрывает в мощности и водителю самому выбирать, что у него в приоритете – скорость или сила. Кроме этого, на шестой модели чуть меньше расход топлива при этом. Передаточное число, в принципе, выбираем такое, как нас устраивает.

Достаточно много в интернете видео, где рассказывают, как самому снять редуктор заднего моста. Все это рассказано поэтапно. Хорошо, если водитель самостоятельно занимался таким или похожим ремонтом. Но, если автомобиль новый и водитель не принимал участия в разборе автомобиля, лучше такие вопросы предоставить специалистам в автомастерской. Снять и поменять изношенную деталь не очень трудно. Что бы отрегулировать затем работу редуктора, нужен опыт и специальное оборудование, которое не у каждого любителя в наличии.

Это как раз тот случай, что сэкономив на специалистах, можете затем попасть на гораздо большие деньги. Специалист может оценить и степень изношенности шестерен, возможно, будет дешевле поменять весь редуктор, чем ремонтировать старый.

Ремонт или замена, что лучше

Автовладельцы вазовской классики часто не могут решить, что лучше сделать – купить целиком готовый РЗМ в сборе или приобрести отдельные детали, произвести ремонт редуктора. Здесь действительно определиться сложно – цена нового редуктора, разумеется, выше, но хозяин машины освобождается от головной боли с регулировкой. Все дело в том, что хорошего мастера по вазовским редукторам найти не так просто, и нет никакой гарантии, что новая главная пара не загудит.

Если автовладелец покупает новый редуктор, а он гудит, деталь можно обменять по гарантии, но хозяин машины теряет деньги на снятии и установке РЗМ. В случае приобретения бракованной главной пары дороже обходится сам ремонт – придется платить мастеру за вторичную переборку редуктора ЗМ.

Типы редукторов

Типы редукторов в соответствии с классификацией по ГОСТу классифицируют по типу механической передачи и выделяют:

  • цилиндрические;
  • планетарные;
  • конические (коническо-цилиндрические);
  • червячные;
  • волновые.

Учитывая технические характеристики редуктора каждого типа рассмотрим их принцип действия и особенности более детально.

Цилиндрический редуктор

Цилиндрический редуктор – наиболее распространен в промышленности и чаще всего применяется с целью изменения параметров вращения и передачи крутящего момента. В зависимости от типа механизма и специфики конструкции применяются во многих областях, хотя наибольшее распространение получили в металлургии, машиностроении, в электрооборудовании и автомобилях. Особенности конструкции предусматривают различные вариации, обеспечивающие оптимальные рабочие условия для каждого типа механизма индивидуально. Конструкция независимо от модификации включает такие элементы: колесо, комплект подшипников, корпус, смазочную систему, шестеренку, ведущий и ведомый валы. Такой механизм очень шумный, так как во время соприкосновения зубьев валов возникает удар. Но при этом исключается, перегрев механизма из-за отсутствия трения между деталями.

Планетарный редуктор

Планетарный редуктор работает на основании передачи крутящего момента планетарным способом. Планетарная передача предполагает наличие солнечной шестерни, расположенной в центре, коронной шестерни на периферии, а также сателлитов и водила. Три сателлиты располагаются между коронной и солнечной шестеренками. Водила соединяет между собой сателлиты, которые вращаются на его осях. Крутящий момент во время движения будет увеличен во столько раз, во сколько меньше число зубьев на солнечной шестеренка в сравнении с коронной.

Конический редуктор

Конический редуктор обеспечивает передачу вращательного движения с одного вала на другой при помощи зубчатой передачи и муфт. Механизм незаменим в тех случаях, когда конструктивно требуется расположить ведомый и ведущий валы в перпендикулярном положении относительно друг друга. Показатель крутящего момента и угловая скорость регулируются при помощи изменения размеров зубчатых колес или муфты. Существуют узкие и широкие типы конических редукторов. Механизм имеет в сравнении с цилиндрическим меньший КПД и более частое заедание зубьев во время движения.

Червячный редуктор

Червячный редуктор за счет уникальной конструкции допускает вращение вала в разные стороны. Такая особенность вызывает перегрев при повышенных нагрузках, самоторможение и заедание, поэтому механизм должен эксплуатироваться при средней загруженности, не доходя до граничных показателей мощности.

Среди преимуществ выделим высокий показатель КПД до 94%, большое передаточное число при использовании одной ступени, отсутствует шум во время движения и устойчивость к неблагоприятным условиям работы.

Волновой редуктор

Волновой редуктор конструкционно отличается от других типов и включает неподвижное зубчатое колесо, гибкий элемент с зубьями и генератор волны в центре механизма. Во время вращения внутреннего элемента, гибкая шестеренка зубьями одновременно захватывает несколько зубьев зафиксированной шестерни, что создает высокую жесткость при малых люфтах. Механизм обеспечивает высокое передаточное число, имеет компактные размеры, высокая точность кинематики и плавный ход, устойчивость к повышенным рабочим нагрузкам.

Червячный тип редукторов

К этой категории относятся червячные, червячно-цилиндрические механизмы. Главный тип передачи в устройствах – червячный, который раннее называли зубчато-винтовым. Момент силы передается при зацеплении зубчатого колеса и трапецеидального винта (червяка). Производят изделия из устойчивых к износу материалов. В промышленности часто используют 3 вида червячных редукторов:

  • однозаходные;
  • двухзаходные;
  • четырехзаходные.

Количество каналов резьбы на механизме определяет число заходов. В устройствах червячного типа винт зацепляется с одноименным колесом, которое по форме напоминает зубчатое. Зубья на нем заменены на резьбу, которая по форме подходит к трапецеидальному винту. В червячных устройствах, предназначенных для передачи большого крутящегося момента, колеса установлены из разных материалов. Для колесных ступиц используют чугун или из недорогой марки стали, а зубья изготавливают из антифрикционных материалов.

Самый значительный плюс применения редукторов червячного вида – высокая эффективность. Их устанавливают в оборудование, в котором большой момент силы, а угловая скорость маленькая. Основным движущим элементом механизма является трапецеидальный винт. Он начинает двигаться при вращении выходного вала.

Неисправности и их устранение

Редуктор отличается надежностью, редко выходит из строя при условии выполнения своевременных профилактических мер.

Определяют поломку механизма следующим образом:

  1. При скорости 20 км/ч появляется посторонний шум, при увеличении ее до 80 км/ч он исчезает.
  2. При езде со скоростью 80 км/ч включают нейтралку и выключают зажигание — если шум появился, то проблема в редукторе.

В работе Камазовского агрегата чаще всего встречается 3 вида неисправностей:

  1. Перегрев главной передачи. Причинами могут быть:
    • недостаток или избыток масла в картере;
    • усиленное натяжение подшипников;
    • неточные настройки зубьев.
  2. Повышение шума. Причины:
    • износ подшипников;
    • неправильно отрегулированное сцепление;
    • слабое крепление подшипников.
  3. Течь масляной жидкости может быть в результате:
    • износа манжет;
    • загрязнения сапуна.

При выявлении неполадок техники выполняют ремонт. Автовладельцы обращаются на СТО или делают его своими руками.

Как отрегулировать

Регулировка редуктора моста в КамАЗах заключается в настройке таких параметров, как:

  • натяжение кольца конических роликоподшипников;
  • дифференциал;
  • боковой зазор в зацеплении пары шестерен;
  • пятно контакта.

При ремонте среднего редуктора технические данные должны быть соблюдены; номинальные значения зазоров и допусков выдержаны.

Для точной регулировки натяга необходимо:

  1. Уменьшить размеры шайбового пакета на величину осевого сдвига с допуском 0,04-0,06 мм.
  2. Затянуть крепежную гайку.
  3. Проверить силу поворота стакана.
  4. Установить в корпус.

Дифференциал устанавливают так, чтобы зубчатый венец ведомого колеса находился симметрично ведущему. Настройка производится равномерным затягиванием регулировочных гаек и закручиванием соединительных болтов.

Как снять, разобрать и собрать

Этапы разборки и сборки среднего или заднего редуктора:

  1. Слив масла.
  2. Демонтаж ведущего моста в сборе.
  3. Разборка его на составляющие последовательно:
    • ведущая и ведомая шестерни;
    • картер;
    • коробка дифференциала;
    • оси сателлитов.
  4. Проверка состояния:
    • крестовин;
    • шеек;
    • полуосевых шестеренок;
    • привода.
  5. Замена изношенных изделий.
  6. Проведение регулировки.
  7. Сборка моста в обратном порядке.
  8. Проведение испытания собранного моста на отсутствие скрежета, течи в местах соединения.

После выполнения всех операций собранный механизм устанавливают в рабочее положение.

Устройство редуктора

Виды редукторов

Назначение редуктора это передача крутящего момента от привода к исполнительному механизму и изменение крутящего момента и угловой скорости, в том числе и направление вращения вала. В машиностроении применяются червячные, цилиндрические, конические, планетарные, волновые и другие виды редукторов. Они применяются для привода барабанов лебедок грузовых и пассажирских лифтов или конвейерных лент, в червячных и шестеренных талях, для вращения валков прокатных станов и т.д. Основной рабочий орган редуктора это зубчатое колесо, которое входит в зацепление с сопряженным колесом, обеспечивая передачу крутящего момента. В цилиндрическом редукторе, применяемом для передачи крутящего момента между параллельными валами, применяется цилиндрическое зубчатое колесо, зацепление в котором может быть прямозубым, косозубым или шевронным. Для передачи вращения между перпендикулярно расположенными валами применяются червячный или конический редуктор. В червячном редукторе применяется т.н. червячная передача, состоящая из червяка и червячного колеса. Червяк может быть цилиндрическим или глобоидным. В коническом редукторе применяются конические колеса с прямозубым или косозубым зацеплением, оси вращения которых расположены под 90° друг к другу. Наиболее сложным, производительным и дорогим является планетарный редуктор, который применятся для передачи вращения между соосными валами, где требуется обеспечение больших передаточных чисел, высокой производительности и компактности.


Как устроен редуктор

Рассмотрим назначение и устройство редуктора, принцип работы на примере двухступенчатого цилиндрического редуктора.

Основные элементы редуктора это корпус, в котором смонтированы детали редуктора, тихоходный вал, обозначен буквой Т и быстроходный вал (Б), промежуточный вал и зубчатые колеса. Так как основное назначение редуктора это повышение крутящего момента за счет редуцирования, т.е. уменьшения угловой скорости вращения выходного вала, то тихоходный вал соединен с исполнительным механизмом, а быстроходный вал соединен с приводом (электродвигатель, гидромотор или ДВС). На быстроходном валу смонтировано зубчатое колесо, которое вращается с теми же параметрами, что и быстроходный вал. Это зубчатое колесо входит в зацепление с колесом большего диаметра, расположенным на одном конце промежуточного вала. За счет разницы в диаметрах промежуточное колесо вращается медленнее, но с большим крутящим моментом. На второй конец промежуточного вала смонтировано зубчатое колесо меньшего диаметра, но вращающееся с той же скоростью и моментом.

Малое колесо промежуточного вала передает вращение на зубчатое колесо тихоходного вала, имеющее больший диаметр, поэтому снижение скорости вращение и прирост момента повторяются. Таким образом, в таком редукторе выполнены два зацепления, производящие уменьшение скорости вращения и увеличение крутящего момента. Каждое зацепление имеет свое передаточное отношение равное отношению угловых скоростей или диаметров колес. Передаточное отношение редуктора это произведение передаточных отношений отдельных пар колес. Таким образом, получаем двухступенчатый редуктор, состоящий из двух пар зубчатых колес, передающих крутящий момент. На данном примере мы узнали, как устроен редуктор.

Устройство и работа планетарного редуктора

Червячный, цилиндрический и конические редуктора имеют, в общем, схожую конструкцию – зубчатые колеса соединены последовательно и в зацепление всегда находятся два колеса, причем каждый вал приводится в движение своим колесом. Это обеспечивает простоту конструкции, надежность, однако приводит к увеличению габаритов и массы.


В планетарном редукторе применен иной принцип устройства и работы. Простая планетарная передача состоит из шестерен-сателлитов 2, закрепленных на водиле 4, вращающихся вокруг центральной, солнечной шестерни 1, при этом опорой для шестерен-сателлитов служит неподвижная коронная шестерня 3. Вращение передается несколькими сателлитами, которые вращаются вокруг солнечной шестерни. Вследствие этого уменьшается нагрузка на центральное колесо. Передаточное отношение определяется отношением угловой скорости солнечной шестерни к угловой скорости водила. Планетарные передачи так же могут быть многоступенчатыми, где применяется несколько рядов сателлитов и солнечных шестерен, что увеличивает передаточное число до 1000 и более. Планетарные редуктора применяются в приводах требующих высоких оборотов, например приводы транспортных машин, коробках передач, сервоприводах и т.д.

Как рассчитать передаточное число

Шестерня и колесо имеют разное количество зубов с одинаковым модулем и пропорциональный размер диаметров. Передаточное число показывает, сколько оборотов совершит ведущая деталь, чтобы провернуть ведомую на полный круг. Зубчатые передачи имеют жесткое соединение. Передающееся количество оборотов в них не меняется. Это негативно сказывается на работе узла в условиях перегрузок и запыленности. Зубец не может проскользнуть, как ремень по шкиву и ломается.

Расчет без учета сопротивления

В расчете передаточного числа шестерен используют количество зубьев на каждой детали или их радиусы.

Где u12 – передаточное число шестерни и колеса;

Z2 и Z1 – соответственно количество зубьев ведомого колеса и ведущей шестерни.

Знак «+» ставится, если направление вращения не меняется. Это относится к планетарным редукторам и зубчатым передачам с нарезкой зубцов по внутреннему диаметру колеса. При наличии паразиток – промежуточных деталей, располагающихся между ведущей шестерней и зубчатым венцом, направление вращения изменяется, как и при наружном соединении. В этих случаях в формуле ставится «–».

При наружном соединении двух деталей посредством расположенной между ними паразитки, передаточное число вычисляется как соотношение количества зубьев колеса и шестерни со знаком «+». Паразитка в расчетах не участвует, только меняет направление, и соответственно знак перед формулой.

Обычно положительным считается направление движения по часовой стрелке. Знак играет большую роль при расчетах многоступенчатых редукторов. Определяется передаточное число каждой передачи отдельно по порядку расположения их в кинематической цепи. Знак сразу показывает направление вращения выходного вала и рабочего узла, без дополнительного составления схем.

Вычисление передаточного числа редуктора с несколькими зацеплениями – многоступенчатого, определяется как произведение передаточных чисел и вычисляется по формуле:

Способ расчета передаточного числа позволяет спроектировать редуктор с заранее заданными выходными значениями количества оборотов и теоретически найти передаточное отношение.

Зубчатое зацепление жесткое. Детали не могут проскальзывать относительно друг друга, как в ременной передаче и менять соотношение количества вращений. Поэтому на выходе обороты не изменяются, не зависят от перегруза. Верным получается расчет скорости угловой и количества оборотов.

КПД зубчатой передачи

Для реального расчета передаточного отношения, следует учитывать дополнительные факторы. Формула действительна для угловой скорости, что касается момента силы и мощности, то они в реальном редукторе значительно меньше. Их величину уменьшает сопротивление передаточных моментов:

  • трение соприкасаемых поверхностей;
  • изгиб и скручивание деталей под воздействием силы и сопротивление деформации;
  • потери на шпонках и шлицах;
  • трение в подшипниках.

Для каждого вида соединения, подшипника и узла имеются свои корректирующие коэффициенты. Они включаются в формулу. Конструктора не делают расчеты по изгибу каждой шпонки и подшипника. В справочнике имеются все необходимые коэффициенты. При необходимости их можно рассчитать. Формулы простотой не отличаются. В них используются элементы высшей математики. В основе расчетов способность и свойства хромоникелевых сталей, их пластичность, сопротивление на растяжение, изгиб, излом и другие параметры, включая размеры детали.

Что касается подшипников, то в техническом справочнике, по которому их выбирают, указаны все данные для расчета их рабочего состояния.

При расчете мощности, основным из показателей зубчатых зацепления является пятно контакта, оно указывается в процентах и его размер имеет большое значение. Идеальную форму и касание по всей эвольвенте могут иметь только нарисованные зубья. На практике они изготавливаются с погрешностью в несколько сотых долей мм. Во время работы узла под нагрузкой на эвольвенте появляются пятна в местах воздействия деталей друг на друга. Чем больше площадь на поверхности зуба они занимают, тем лучше передается усилие при вращении.

Все коэффициенты объединяются вместе, и в результате получается значение КПД редуктора. Коэффициент полезного действия выражается в процентах. Он определяется соотношением мощности на входном и выходном валах. Чем больше зацеплений, соединений и подшипников, тем меньше КПД.

Конструктивные особенности редуктора

Дифференциал представляет собой механизм с несколькими элементами, который включает в себя: зубчатое колесо главной передачи, боковое зубчатое колесо ведомой шестерни, сателлиты и шестерни полуосей.

В поворотах внешние колеса срезают более широкую дугу, чем внутренние. Дифференциал должен гарантировать, что внешние и внутренние колеса могут вращаться с разными скоростями – отсюда и название, при этом механизм обеспечивает передачу вращения на оба колеса. Базовый корпус дифференциала содержит большое зубчатое колесо, которое сцепляется с малой шестерней, приводимой в движение карданным валом. Соотношение между кольцом и ведущей шестерней называется передаточным числом главной передачи или передним мостом. Кольцевое зубчатое колесо также вращает держатель, содержащий перпендикулярно зацепляющие зубчатые колеса, которые позволяют валам левой и правой осей вращаться независимо. Недостаток: колесо с наименьшим тяговым усилием ограничивает мощность, приложенную к дороге. Что приводит к пробуксовке одного из колес при езде по пересеченной местности или обледенелой поверхности.

Некоторые автомобили оснащены так называемыми устройствами контроля тяги, которые могут преодолеть этот недостаток дифференциала. Такие автомобили имеют дифференциалы, которые включают в себя электрогидравлические сцепления, приводимые в действие соленоидом, несколько похожие на те, которые используются в автоматической коробке передач, которая может «блокировать» дифференциал, позволяя передавать мощность на оба ведущих колеса. Желательно активировать эти сцепления только в определенных условиях и отключить их во время обычного движения, позволяя дифференциалу выполнить свое предназначение.

Система контроля тяги включает в себя датчики для измерения скорости колеса и контроллер, который определяет состояние проскальзывания колеса на основе этих относительных скоростей. Везде, где обнаруживается состояние вращения колеса, контроллер отправляет электрические сигналы на соленоиды, тем самым активируя сцепления для устранения проскальзывания.

Дифференциал автомобиля, будь то передний (FWD), задний (RWD) или оба (AWD) привода, помогает подавать мощность на ось и регулирует скорость вращения каждого колеса. В переднеприводных машинах, обычно встраивают дифференциал в коробку передач, в автомобиле с задним приводом редуктор имеет свой собственный корпус, который вмонтирован в задний мост. Как и у любого другого компонента трансмиссии, у этого узла со временем могут возникнуть различные неисправности.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *