Автомобиль, который ездит на воде: миф или реальность
Содержание:
- Производство водорода
- Как работает система впрыска воды
- Немного о доверчивости и наивности
- ДВС на водородном топливе
- Мифы об автомобилях с водяным двигателем
- Типы установок
- История создания водородного двигателя
- Genepax Автомобиль на воде. Honda начала серийное производство водородных автомобилей
- Необходимая производительность
- Субсидии для авто на водороде
- Мокрые тормоза
- Автомобиль на воде своими руками. Водородный генератор своими руками
- Замерз бачок омывателя? Немедленно отогреть!
- Водородный двигатель дальнейшие перспективы
- Переправа, переправа… Почему стоит бояться луж
- Регулятор тока
- Почему люди верят, что автомобили могут использовать воду в качестве топлива?
- Обязательная продуктивность
- Когда вода замерзает?
- Типы водородного двигателя
- Почему автомобиль на воде — хитрый трюк и ловкое надувательство?
Производство водорода
Еще одной проблемой таких машин является производство водорода, так как это довольно проблематичное мероприятие.
Наиболее распространенный метод называется паровой реформинг. Он заключается в том, что пар смешивается с природным газом, затем нагревается до определенной температуры с последующим добавлением катализатора, такого как никель, в результате чего получается водород и моноксид углерода (ядовитый газ). Около 95 % водорода в мире производится этим путем.
К сожалению, это не экологически чистый процесс, потому что результатом являются и побочные продукты. Таким образом, хотя сам по себе водород в автомобиле не загрязняет окружающую среду, производство данного топлива будет загрязнять наш с Вами воздух.
В результате даже защитники автомобилей на водородном топливе признаются, что производство водорода будет загрязнять окружающую среду в лучшем случае как автомобили на бензиновых двигателях, а в худшем – значительно больше.
«зеленые методы»
В настоящее время не было придумано экологически чистых и достаточно эффективных методов производства водородного топлива для каждодневной заправки миллионов автомобилей.
Конечно же, поклонники автомобилей, работающих на водородном топливе, непреклонны: они уверены, что мы должны продвигаться вперед, ибо наше будущее зависит от работы автотранспорта, который не будет причинять ущерб нашей планете.
Как работает система впрыска воды
В современных силовых агрегатах, оснащаемых данной системой, может устанавливаться разный тип комплектов. В одном случае используется одна форсунка, размещенная на патрубке впускного коллектора перед разветвлением. В другой модификации используется несколько форсунок по типу распределенного впрыска.
Самый простой способ смонтировать подобную систему – установить отдельный резервуар для воды, в котором будет размещен электронасос. К нему подключается трубка, по которой жидкость будет подаваться на распылитель. Когда мотор выйдет на нужную температуру (о рабочей температуре ДВС рассказывается в другой статье), водитель включает распыление, благодаря чему во впускном коллекторе обеспечивается создание влажного тумана.
Простейшая установка может устанавливаться даже на карбюраторный мотор. Но при этом не обойтись без некоторой модернизации впускного тракта. Управление системой в таком случае обеспечивается из салона водителем.
В более продвинутых модификациях, которые можно найти в магазинах для автотюнинга, настройка режима распыления обеспечивается либо отдельным микропроцессором, либо его работа связана с сигналами, исходящими из ЭБУ. В этом случае для установки системы потребуется воспользоваться услугами автоэлектрика.
В устройство современных систем распыления входят такие элементы:
- Электронасос, обеспечивающий давление до 10 бар;
- Одна или несколько форсунок для распыления воды (их количество зависит от устройства всей системы и принципа распределения влажного потока по цилиндрам);
- Контроллер – микропроцессор, который управляет моментом и количеством впрыска воды. К нему подключается насос. Благодаря этому элементу обеспечивается постоянная высокоточная дозировка. Алгоритмы, прошитые в некоторых микропроцессорах, позволяют системе автоматически подстраиваться под разные режимы работы силового агрегата;
- Бачок для жидкости, которую нужно распылять в коллектор;
- Датчик уровня, размещенный в этом резервуаре;
- Шланги нужной длины и соответствующие крепления.
Система работает по такому принципу. На контроллер впрыска поступают сигналы от датчика расхода воздуха (подробней о его работе и неисправностях читайте здесь). В соответствии с этими данными при помощи соответствующих алгоритмов микропроцессор рассчитывает время и количество распыляемой жидкости. В зависимости от модификации системы форсунка может быть выполнена просто в виде втулки с очень тонким распылителем.
Большинство современных систем просто подают сигнал на включение/выключение насоса. В более дорогих комплектах имеется специальный клапан, который изменяет дозировку, но в большинстве случаев он работает некорректно. В основном контроллер срабатывает, когда мотор выходит на 3000 об/мин. и более. Прежде, чем устанавливать подобную установку на свое авто, нужно учесть, что большинство производителей предупреждают о некорректной работе системы на некоторых автомобилях. Подробного списка никто не предоставит, так как все зависит от индивидуальных параметров силового агрегата.
Хотя основной функцией впрыска воды является повышение мощности мотора, в основном его используют только в качестве интеркулера для охлаждения потока воздуха, идущего от раскаленной турбины.
Помимо повышения отдачи мотора многие уверены, что работа впрыска также обеспечивает очищение рабочей полости цилиндра и выпускного тракта. Некоторые уверены, что наличие пара в выхлопе создает химическую реакцию, которая нейтрализует некоторое количество токсичных веществ, но в таком случае машине не нужен будет такой элемент, как автомобильный катализатор или сложная система AdBlue, о которой можно прочитать здесь.
Подкачка воды имеет эффект только на высоких оборотах мотора (он должен быть хорошо разогретым и поток воздуха должен быть стремительным, чтобы влага сразу попадала в цилиндры), а в большей степени в турбированных силовых агрегатах. Этот процесс обеспечивает создание дополнительного крутящего момента и небольшой прирост мощности.
Если двигатель атмосферный, то он не станет ощутимо мощнее, но от детонации он точно не будет страдать. У турбированного ДВС установленный перед нагнетателем впрыск воды обеспечит повышение КПД за счет снижения температуры поступающего воздуха. А для еще большего эффекта в такой системе используется упомянутая раньше смесь воды и метанола в пропорции 50х50.
Немного о доверчивости и наивности
Некоторые предприимчивые дельцы предлагают на продажу водородный генератор на авто. Рассказывают про обработку лазером поверхности электродов или про уникальные секретные сплавы, из которых они сделаны, специальные катализаторы воды, разработанные в научных лабораториях мира.
Всё зависит от способности мысли таких предпринимателей к полёту научной фантазии. Доверчивость может сделать вас за ваши же средства (иногда даже не малые) владельцем установки, у которой через два месяца эксплуатации разрушатся контактные пластины.
Если уж вы решили таким способом экономить, то лучше собирать установку самостоятельно. По крайней мере, не на кого потом будет пенять.
ДВС на водородном топливе
На протяжении нескольких десятилетий идут поиски возможности приспособить двигатели внутреннего сгорания для полной или гибридной работы на водородном топливе. В Великобритании ещё в 1841 году был запатентован двигатель, работающий на воздушно-водородной смеси. Концерн «Цеппелин» в начале ХХ века в качестве движущей установки своих знаменитых дирижаблей использовал двигатели внутреннего сгорания, работающие на водороде.
Развитию водородной энергетики способствовал и мировой энергетический кризис, разразившийся в 70 годах прошлого века. Однако с его окончанием водородные генераторы быстро были забыты. И это несмотря на массу преимуществ по сравнению с обычным топливом:
- идеальная воспламеняемость топливной смеси на основе воздуха и водорода, что даёт возможность лёгкого пуска двигателя при любой температуре окружающей среды;
- большое выделение тепла при сгорании газа;
- абсолютная экологическая безопасность – отработавшие газы превращаются в воду;
- выше в 4 раза скорость сгорания по сравнению с бензиновой смесью;
- способность смеси работать без детонации при высокой степени сжатия.
Основной технической причиной, являющейся непреодолимой преградой в использовании водорода в качестве топлива автомобилей стала невозможность уместить достаточное количество газа на транспортном средстве. Размер топливного бака для водорода будет сравним с параметрами самого автомобиля. Большая взрывоопасность газа должна исключать возможность малейшей утечки. В жидком виде необходима криогенная установка. Этот способ также мало осуществим на автомобиле.
Мифы об автомобилях с водяным двигателем
Существует множество мифов об автомобилях с водяным двигателем. Говоря, что автомобиль работает на воде, некоторые думают, что автомобиль на самом деле работает, используя воду в качестве топлива. Это не совсем так.
Автомобили с водородным двигателем не сжигают газообразный водород в камерах сгорания — вместо этого он объединяет газообразный водород с атмосферным кислородом, вызывая химическую реакцию, которая генерирует электричество. Это электричество затем используется для питания электродвигателя, приводящего в движение транспортное средство.
Согласно законам термодинамики, вода не является топливом. Единственный способ, с помощью которого топливо может накапливать энергию, — это перемещать ее из одного места в другое (подобно работе плотины гидроэлектростанции). Также требуется много энергии, чтобы разделить воду на элементы H и O. Ученые до сих пор не нашли эффективного способа решения этой фундаментальной проблемы.
Вопреки теории заговора, создание автомобиля, который полностью работает на воде, является законным. Фактически, это ознаменовало бы историческое технологическое открытие беспрецедентных масштабов.
Типы установок
На данное время водородный генератор для автомобиля может быть укомплектован тремя разными по типу, характеру работы и продуктивности электролизёрами:
- Простой, цилиндрического типа. Создает 700 миллилитров газа за минуту. Такой продуктивности достаточно для двигателей с объёмом работы до 1,4 литров.
- С ячейками раздельного типа. Является наиболее эффективным по типу конструкции и продуктивности. Выход газа превосходит 2 литра за минуту. Такой объём дает возможность использовать его на грузовом транспорте.
- Электролизёр с пластинами открытого типа. Данная конструкция обеспечивает добавочное охлаждение системе, благодаря чему может применяться при непрерывной эксплуатации агрегата. Выход газа изменяется количеством пластин реактора.
Первый вид конструкции вполне достаточен для большинства карбюраторных двигателей. Отсутствует необходимость в установке сложной электронной схемы регулятора продуктивности газа, да и сама сборка подобного электролизёра не представляет трудности.
Для намного мощнее машин предпочтительна сборка второго типа реактора. А для двигателей, работающих на дизеле, и большегрузных машин применяют Третий тип реактора.
История создания водородного двигателя
Начнем с того, что идеи построить водородный мотор появились еще в 1806 г. Основоположником стал Франсуа Исаак де Риваз, который получал водород из воды методом электролиза. Как видно, двигатель на водороде «родился» задолго до того, как был поднят ряд вопросов касательно окружающей среды и токсичности выхлопа.
Другими словами, попытки запустить ДВС на водороде были предприняты не для защиты окружающей среды, а в целях банального использования водорода в качестве топлива. Спустя несколько десятков лет (в 1841 г.) был выдан первый патент на такой двигатель, в 1852 г. в Германии появился агрегат, который успешно работал на смеси воздуха и водорода.
Во времена Второй мировой войны, когда возникли сложности с поставками нефтяного топлива, техник из СССР Борис Исаакович Шелищ, который был родом из Украины, заложил основы российской водородной энергетики. Он также предложил использовать смесь водорода и воздуха в качестве горючего для ДВС, после чего его идеи быстро нашли практическое применение. В результате появилось около полутысячи двигателей, работавших на водороде.
Однако после окончания войны дальнейшее развитие водородного двигателя было приостановлено как в СССР, так и во всем мире. Затем об этом двигателе вспомнили только тогда, когда в 70-е годы XX века случился топливный кризис. В результате компания BMW в 1979 г. построила автомобиль, двигатель которого использовал водород в качестве основного топлива. Агрегат работал относительно стабильно, не было взрывов и выбросов водяного пара.
Другие автопроизводители также начали работы в этой области, в результате чего к концу XX века появилось не только много прототипов, но и вполне успешно действующих образцов двигателей на водородном топливе (бензиновый и дизельный двигатель на водороде).
Однако после того как топливный кризис окончился, работы над водородными ДВС также были свернуты. Сегодня интерес к альтернативным источникам энергии снова растет, теперь уже по причине серьезных экологических проблем, а также с учетом того, что запасы нефти на планете быстро сокращаются и на нефтепродукты закономерно растут цены.
Также правительства многих стран стремятся стать энергонезависимыми, а водород является вполне доступной альтернативой. На сегодняшний день над водородными ДВС ведут работы GM, BMW, Honda, корпорация Ford и т.д.
Genepax Автомобиль на воде. Honda начала серийное производство водородных автомобилей
После тщательной проверки на качество первая партия автомобилей Honda FCX Clarity будет передана владельцам.
16 июня 2008 года компания Honda объявила о том, что было начато производство первой в мире серийной модели, работающей на водородном топливе, — Honda FCX Clarity . Кроме того, уже были названы первые владельцы этого экологически безопасного транспортного средства.
Автомобиль производится на заводе Honda Automobile New Model Center, который расположен в префектуре Тотиги, Япония. Honda FCX Clarity будет сдаваться в аренду жителям США уже с июля, а японцам с осени этого года. За три года планируется выпустить около 200 таких автомобилей. Первыми владельцами FCX Clarity станут известные во всем мире люди, среди которых продюсер Рон Йеркса, актриса Джейми Ли Кёртис и ее муж режиссер Кристофер Гест.
Honda FCX Clarity — автомобиль нового поколения, работающий на водородном топливе. Машина работает на электродвигателе, который получает электрическую энергию, вырабатываемую топливными ячейками. В атмосферу этот автомобиль выбрасывает лишь воду, а его показатели эффективности расхода топлива в три раза лучше характеристик машин с бензиновыми двигателями: на одном баке топлива автомобиль может проехать около 450 км, то есть на 115 км ему требуется 1 кг водородного топлива.
Потратив более 15 лет на разработку и исследования, Honda смогла создать автомобиль, работающий на водородном топливе. На фоне таких результатов довольно сомнительно выглядят заверения других японских разработчиков, сообщающих о создании автомобиля, работающего на простой воде.
Компания Genepax представила автомобиль, который будет приводиться в движение обычной водой, а вредные выбросы в атмосферу будут равны нулю. Причем, если верить японским разработчикам, всего одного литра воды хватит на час езды со скоростью 80 км/час. Представители компании утверждают, что машина может использовать воду любого качества — хоть дождевую из лужи, хоть из-под крана, речную и даже морскую. «Автомобиль может продолжать движение до тех пор, пока у вас есть с собой емкость с водой, чтобы периодически заливать ее в топливный бак», — сказал глава Genepax.
Как сообщает « Газета.Ru », силовая установка этого автомобиля получила название Water Energy System (WES). Она устроена по тому же принципу, что и другие двигатели, использующие в качестве топлива водород. Но главной особенностью системы Genepax является то, что она использует коллектор с электродами мембранного типа, который состоит из особого материала, способного при помощи химической реакции расщепить воду на кислород и водород. Пока разработчики не получили патент на свое изобретение, а потому технология преобразования воды в энергию пока держится в секрете. Однако президент компании-разработчика Хирасава Киеси намекнул, что этот процесс аналогичен принципу получения водорода путем реакции гидрида металла и воды.
Первые владельцы Honda FCX Clarity получают ключи от президента компании.
Первые владельцы Honda FCX Clarity и президент компании с комфортом разместились в автомобиле.
Необходимая производительность
Для того чтобы можно было действительно экономить топливо, водородный генератор для автомобиля должен ежеминутно вырабатывать газ из расчёта 1 литр на 1000 рабочего объёма двигателя. Исходя из этих требований подбирается количество пластин для реактора.
Для увеличения поверхности электродов необходимо провести обработку поверхности наждачной бумагой в перпендикулярном направлении. Такая обработка крайне важна – она увеличит рабочую площадь и позволит избежать «прилипания» пузырьков газа к поверхности.
Последнее приводит к изоляции электрода от жидкости и препятствует нормальному электролизу. Не стоит также забывать, что для нормальной работы электролизёра вода должна быть щелочной. Катализатором может служить обычная сода.
Субсидии для авто на водороде
Конечно, вопросы стоимости инфраструктуры могут быть частично решены правительствами, которые в состоянии создать стимулы: предоставлять покупателям различные скидки или даже обеспечивать людей заправкой водородом бесплатно.
Это уже происходит в Японии – в стране, где беспокоятся о своей энергетической безопасности (особенно после ядерной катастрофы на Фукусиме).
Правительство Японии очень помогает населению субсидиями на покупку водородных автомобилей (сумма субсидии составляет почти 27 000 долларов) в рамках программы, для которой выделят 400 млн. долларов из государственного бюджета.
С помощью данной программы планируется помочь населению Японии закупить 6 000 частных транспортных средств, работающих на водороде.
Между тем в США комитет энергетики штата Калифорния пообещал 205 млн. долларов для обеспечения почти 70 АЗС водородным топливом к концу следующего года. В Калифорнии также выплачивают 12 000 долларов тем, кто покупает автомобили на водороде.
дороже,готовы
Британское правительство, со своей стороны, пообещало 17 млн. долларов для постройки еще 15 водородных станций на Юго-Востоке страны.
Мокрые тормоза
Опытный водитель знает, что тормозные колодки также в числе первых встречают агрессивную водную среду. Степень их состояния можно установить, вслушиваясь во время нескольких плавных подтормаживаний. Еще мокрые тормоза рекомендуется сушить после проезда по глубокой луже: ехать и время от времени просто нажимать на педаль тормоза. И если нет проблем с цилиндриком, диском или колодками, то этой меры должно хватить.
К сожалению, кривизна тормозных дисков – обычное состояние многих моделей автомобилей. Например, старые «японцы» со слишком маленькими тормозами или более поздние Opel. Для многих моделей это типичное заболевание, не обязательно связанное с воздействием воды.
Вопрос: менять или нет? Многими экспертами ремонт тормозных дисков признан неэффективным и даже опасным. С такими дисками можно ездить, если кривизна небольшая, хотя это влияет на комфорт езды. Но если вы чувствуете биение или вибрацию на руле, лучше заменить.
Автомобиль на воде своими руками. Водородный генератор своими руками
Наткнулся в интернете на такую тему:с помощью электролиза воды (процесс, где электроэнергия используется для разрыва молекул воды на HHO). извлекаем газ водород и кислород. Эта смесь водорода и кислорода затем втягивается в впускной коллектор автомобиля, где она смешивается с обычным бензином из топливного бака и сгорает в двигателе в обычном порядке.Изобретатели данной идеи обесчают экономию топлива, чуть ли не в 50%!, и прирост мощности. А на некоторые «кулибины» (это я с глубоким уважением к ним, а не с иронией!) утверждают что установка будет работать, но с наименьшим КПД. А чтоб увеличить КПД нужно войти в такт колебания молекулы воды ( а она где то 2400 мегагерц), т.е. подобрать частоту тока под частоту колебания молекулы воды, тем самым входим в резонанс. Утверждают что при этом вообще можно отключиться от бензина!
Я лично скептически настроен к таким утверждениям, но данная идея, (и цена на бенз) не дают мне спокойно спать уже несколько дней! :))))Во первых, как я понимаю, электролиз-не самый эфективный способ получения водорода, на него идут слишком большие затраты енергии, которая береться не из воздуха, а из подгруженого генератора автомобиля, что в свою очередь повышает расход топлива.Так же, мне кажеться, что не каждий генератор может выдать такую избыточную мощность.
Тем не менее, идея очень привлекательна. Посему прошу высказать мнения кто что думает по этому поводу…
Материан был «спионерен» с следующего сайта:neutrino.mk.ua/alternativ…y-generator-svoimi-rukami
7 лет Метки: газ водород, из воды в двигатель. экономия, или миф?
Замерз бачок омывателя? Немедленно отогреть!
Обогреть всю машину
Самый простой способ – отогревание всей машины. В каком виде это может быть организовано? Варианта три:
- Загнать автомобиль на теплую парковку, например, в подвальное помещение торгового центра.
- Отогреться в теплом боксе.
- Посетить автомойку с резервированием полного пакета услуг. Наружная и внутренняя мойка с финишными работами в виде полировки пластиковых панелей и нанесения воска на кузов отнимает много времени, которого может хватить на оттаивание стеклоомывателя.
Основной минус комплексного отогревания – большое количество времени, затрачиваемое на разморозку. На оттаивание воды понадобится около суток, если машину поместить в подземную парковку. Дела обстоят веселей, когда прихватило демисезонную незамерзайку, но все же…
Нагреть только бачок
Отличная альтернатива комплексному отогреванию – разморозка только резервуара с омывайкой. Безотказный вариант: снять бачок и отнести домой под струю едва теплой, а впоследствии – горячей воды. Лед быстро превратится в жидкость и емкость можно будет опустошить. Только не направляйте раскаленную струю на холодную деталь – треснет вмиг.
С появлением мощных строительных фенов стало возможным отогревать резервуар совместно с трубопроводами
Способ хорош, но требует предельной осторожности и наличия розетки на 220 V вблизи автомобиля
Водородный двигатель дальнейшие перспективы
Сегодня над созданием экологичных двигателей трудятся многие компании. Некоторые идут по пути создания двигателей-гибридов, другие делают ставку на электромобили и т.д. Что касается водородных установок, в плане экологии и производительности данный вариант также может в ближайшее время составить конкуренцию ДВС на бензине, газе или дизтопливе.
Водородные двигатели показали себя несколько лучше, чем самые продвинутые электрокары. Например, японская модель Honda Clarity. Единственное, остался такой недостаток, как способы и возможности заправки. Дело в том, что инфраструктура водородных заправочных станций не особенно развита, причем в мировом масштабе.
Также не особенно большим является и сам выбор водородных легковых авто. Кроме Honda Clarity можно разве что упомянуть Mazda RX8 Hydrogen, а также BMW Hydrogen 7. Фактически это автомобили-гибриды, которые работают на жидком водороде и бензине. Еще можно добавить в список Mercedes GLC F-Cell. Эта модель имеет возможность подзарядки от бытовой сети электропитания и позволяет пройти до 500 км. на одном заряде.
Дополнительно стоит отметить модель Toyota Mirai. Автомобиль работает только на водороде, одного бака хватает на 600 км. Водородные двигатели еще встречаются на отечественной модели «Нива», а также устанавливаются корейцами на специальную версию внедорожника Hyundai Tucson.
Как видно, с двигателем на водороде активно экспериментируют многие производители, однако такое решение все равно имеет много недостатков. При этом некоторые минусы сильно мешают массовой популяризации.
Прежде всего, это безопасность и сложность транспортировки такого топлива
Важно понимать, что водород весьма горюч и взрывоопасен даже при относительно невысоких температурах. По этой причине его сложно хранить и перевозить. Получается, необходимо строить особые водородные резервуары для авто с данным типом двигателя
Как результат, на практике водородных заправок очень мало
Получается, необходимо строить особые водородные резервуары для авто с данным типом двигателя. Как результат, на практике водородных заправок очень мало.
К этому также можно добавить определенную сложность и высокие расходы на ремонт и обслуживание водородного агрегата, а также необходимость в подготовке и обучении большого количества высококвалифицированного персонала. Если же говорить о самом авто на водороде и его эксплуатационных характеристиках, наличие водородной установки делает машину более тяжелой, закономерно ухудшается управляемость.
Переправа, переправа… Почему стоит бояться луж
В техпаспорте вашего автомобиля производитель обязательно указывает параметры преодоления водных препятствий, глубину брода
Кроме того, важно использовать правильную технику вождения, если вы заехали глубже, чем планировали
Держите ровную, одинаковую скорость на первой передаче вне зависимости от типа трансмиссии – механика/автомат, – сохраняя не очень высокие, но постоянные обороты без остановок и ускорений. В противном случае вы рискуете залить волнами моторный отсек. Скорость передвижения должна быть такой, чтобы волна шла перед вашей машиной, так чтобы радиаторная решетка все время находилась в пространстве «за волной».
Если вы затеяли массовую переправу, не спешите на ее преодоление следом за коллегами.
Волны, которые подняли движущиеся впереди, особенно если у них крупные автомобили, могут захлестнуть вашу машину. Однако в случае если вы «заглохли», немного не дотянув до заветного берега, советуем вылезать «на стартере». Вам понадобятся механическая трансмиссия, полностью заряженная аккумуляторная батарея, … а также терпение и удача.
Однако описанная ситуация и пути ее преодоления – это скорее исключение, чем правило. Особенностью российского климата является преобладание сырой, влажной погоды с большим количеством осадков, особенно в межсезонье. И лужи на улицах, трассах поздней осенью или ранней весной могут коварно скрывать опасные препятствия в виде ямы, выбоины, промоины или открытого канализационного люка – его по «нашей» привычке забыли закрыть. Понятно, что, попав в такую «ловушку», можно нанести серьезный ущерб машине, повредив колесные диски или даже подвеску. И летом ситуация не лучше, когда после проливных дождей то здесь, то там случаются прорывы магистральных трубопроводов.
Поэтому водителям необходимо быть предельно внимательными и осторожными. Ниже мы перечислим наиболее распространенные опасности опрометчивой езды по лужам, приводящие к повреждениям и ремонту. От простых и относительно дешевых до сложных и затратных.
Регулятор тока
Водородный генератор на авто в процессе работы увеличивает свою производительность. Это связано с выделением тепла при реакции электролиза. Рабочая жидкость реактора испытывает нагрев, и процесс протекает гораздо интенсивнее. Для контроля над течением реакции используют регулятор тока.
Если не понижать его, может произойти просто закипание воды, и реактор перестанет выдавать газ Брауна. Специальный контролер, регулирующий работу реактора, позволяет изменять производительность с увеличением оборотов.
Карбюраторные модели оборудуют контроллером с обычным переключателем двух режимов работы: «Трасса» и «Город».
Почему люди верят, что автомобили могут использовать воду в качестве топлива?
Большинству людей нравится теория заговора, особенно та, которая приносит пользу нашей земле. И поскольку некоторые утверждают, что построили автомобиль, работающий на воде, многие надеются, что такое возможно. Хотя никогда не было серийного автомобиля, который мог бы работать на воде, многие все еще верят, что технология возможна. Но почему?
Люди верят в автомобили с водяным двигателем, потому что это красивая концепция. Подумайте об этом — это экологически чистая альтернатива как традиционным бензиновым, так и электрическим транспортным средствам. В конце концов, вода — это возобновляемый ресурс, поэтому она является устойчивым вариантом для питания автомобилей.
Более того, автомобили, работающие на воде, будут выделять меньше или даже нулевое загрязнение по сравнению с автомобилями, работающими на бензине, что делает их более чистым выбором для транспортировки.
Обязательная продуктивность
Для того чтобы можно было на самом деле экономить горючее, водородный генератор для автомобиля должен каждую минуту генерировать газ из расчёта 1 литр на 1000 объёма работы мотора. Исходя из таких требований выбирается кол-во пластин для реактора.
Для увеличения поверхности электродов нужно провести отделку поверхности шлифовальной бумагой в перпендикулярном направлении. Подобная обработка очень важна – она повысит площадь для работы и даст возможность избежать «прилипания» пузырьков газа к поверхности.
Последнее приводит к изоляции электрода от жидкости и мешает нормальному электролизу. Также необходимо помнить, что для правильной работы электролизёра вода должна быть щелочной. Катализатором послужит обыкновенная сода.
Когда вода замерзает?
Из курса физики, даже посещавшие школу через день двоечники знают, что вода замерзает при 0°C. Казалось бы, что этого знания достаточно, чтобы точно знать, когда двигатель разморозится. Но, на практике все выглядит несколько по-другому. Зачастую автомобиль спокойно выдерживает температуру до -3°. Известны случаи, когда даже -7° не оказывались смертельными для двигателя. Почему так происходит?
Читать дальше: Настройка газового редуктора 2 поколения на инжекторе
Мотор является довольно большим массивом металла. Также внутри него находится смазка, а еще охлаждающая жидкость, в нашем случае вода. Когда вы ставите машину на стоянку, то температура силового агрегата находится на отметке около 90°. Моментально остыть мотор не может, к тому же, обычно с вечера температура плюсовая. Остывание происходит постепенно. При легком заморозке двигатель полностью промерзнуть просто не успевает.
Также сказывается наличие дополнительных факторов. В пасмурную погоду остывание происходит быстрее. Если в радиатор будет задувать ветер, то шанс заморозить авто значительно увеличивается. В целом, до температуры в -3° за сохранность силового агрегата можно не переживать. При морозе до -7° риск значительно увеличивается. Но, все же при правильном подходе можно пережить и такое.
https://youtube.com/watch?v=wdSJtp9i5x0
Типы водородного двигателя
Хотя существует несколько модификаций водородных двигателей, все они делятся на два типа:
- Вид агрегата с топливным элементом;
- Доработанный ДВС, приспособленный для работы на водороде.
Рассмотрим каждый тип по отдельности: в чем их особенности.
Силовые установки на основе водородных топливных элементов
За основу работы топливного элемента взят принцип аккумулятора, в котором происходит электрохимический процесс. Единственное отличие водородного аналога – более высокий КПД (в некоторых случаях более 45 процентов).
Топливная ячейка представляет собой одну камеру, в которую помещены два элемента: катод и анод. Оба электрода покрыты платиной (или палладием). Между ними расположена мембрана. Она делит полость на две камеры. В полость с катодом подается кислород, а во вторую – водород.
В результате происходит химическая реакция, результатом которой является объединение молекул кислорода и водорода с выделением электричества. Побочный эффект от процесса – вода и выделившийся азот. Электроды топливных элементов подключены к электроцепи автомобиля, в том числе и электромотору.
Водородные двигатели внутреннего сгорания
В этом случае, хотя мотор и называется водородным, он имеет идентичное строение, что и обычный ДВС. Единственное отличие – происходит сгорание не бензина или пропана, а водорода. Если заправлять баллон водородом, то есть одна проблема – этот газ снизит эффективность обычного агрегата приблизительно на 60 процентов.
Вот несколько других проблем, с которыми связан переход на водород без модернизации мотора:
- Когда ВТС будет сжиматься, газ будет вступать в химическую реакцию с металлом, из которого изготовлена камера сгорания и поршень, а нередко это может происходить и с моторным маслом. Из-за этого в камере сгорания образуется другое соединение, которое не отличается особой способностью к качественному сгоранию;
- Зазоры в камере сгорания должны быть идеальными. Если где-то топливная система имеет хотя бы минимальную утечку, при контакте с раскаленными предметами газ легко воспламенится.
Мотор для Honda Clarity По этим причинам водород практичней применять в качестве топлива в роторных моторах (в чем их особенность, читайте здесь). Впускной и выпускной коллекторы таких агрегатов расположены отдельно друг от друга, поэтому газ на впуске не раскаляется. Как бы то ни было, пока моторы модернизируются так, чтобы обойти проблемы использования более дешевого и экологически чистого топлива.
Почему автомобиль на воде — хитрый трюк и ловкое надувательство?
Топливные ячейки, работающие на водороде, — вполне реальные конструкции. Но в них заправляют не воду, а чистый водород. Внутри двигателя водород и кислород пережигаются. На выходе получается энергия и вода. Проблема у таких двигателей одна — необходимо много водорода. Никто не будет пользоваться баллонами с потенциально опасным газом. Двигатели на воде — удел фантастики. Для электролиза — расщепления воды на элементы — необходима энергия. И её требуется гораздо больше, чем вырабатывается во время разделения, так как электролиз происходит не в вакууме. То есть двигатели не в состоянии обеспечивать сами себя. Таким образом, требуется источник питания извне. В итоге получается обычный водородный двигатель со встроенным генератором. И работает он не на воде, а на тех самых баллонах. Ну или от аккумулятора.
К такому заключению пришли
учёные-критики конца XX века. Именно этот довод использовал суд Огайо, когда
назвал Мейера «наглым мошенником». Однако из-за того, что после учёного
остались лишь чертежи и патенты, сложно сказать, как именно он запустил свой
багги. Получается, автомобиль на воде — несбыточная мечта человечества?