Устройство двигателя внутреннего сгорания
Содержание:
- Основные принципы действия ДВС
- По принадлежности
- Как работает двигатель?
- Особенности работы многоцилиндровых двигателей
- Лучшие китайские лодочные моторы
- Двигатели в автомобилях Лада Гранта
- Плюсы и минусы
- Основные параметры ДВС
- Двухтактный ДВС его конструктивные особенности и описание принципа работы
- 2012 год: двигатель с высокой степенью сжатия – воспламенение бензина от сжатия
Основные принципы действия ДВС
Ключевым элементом ДВС является один или несколько металлических цилиндров, внутри которых происходит сжигание топлива.
Рис. 1. Внутреннее устройство двигателя внутреннего сгорания.
Внутри цилиндра расположен поршень, диаметр которого чуть меньше диаметра цилиндра, что позволяет ему свободно перемещаться.
Рис. 2. Устройство поршня ДВС.
Поршень представляет собой полый металлический цилиндр, опоясанный пружинящими кольцами, вложенными в канавки на поршне (поршневые) кольца. Назначение поршневых колец — не пропускать газы, образующиеся при сгорании топлива, в промежутки между поршнем и стенками цилиндра. К поршню прикреплен металлический стержень (“палец”), который соединяет поршень с шатуном. Шатун служит для передачи вертикального усилия от поршня к коленчатому валу. В верхней части цилиндра имеются два канала, закрытые клапанами. Через один канал — впускной подается горючая смесь (топливо с воздухом), а через другой — выпускной — выбрасываются продукты сгорания.
В верхней части цилиндра размещена свеча зажигания. С помощью этой детали производится поджиг горючей смеси от искры, возникающей между близко расположенными электродами свечи.
Первый поршневой двигатель в 1807 г. изобрел швейцарец Франсуа Исаак де Риваз.
По принадлежности
Естественно, далеко все авто, которые ездят по улицам города, находятся в частной собственности их водителей. По принадлежности выделяют:
- личный автотранспорт (легковушки, грузовики, спецтехника, находящаяся в собственности водителя)
- служебный автотранспорт (легковые автомобили, которые числятся на балансе компании и используются в служебных целях).
- коммерческий транспорт (авто, числящиеся на балансе предприятия и используемые для продвижения бизнеса). Чаще всего на таких автомобилях можно увидеть рекламу компании.
- военный транспорт.
- специально-исследовательский транспорт.
Как работает двигатель?
Начнем с начального положения поршня – он находится вверху. В данный момент впускное отверстие открывается клапаном, поршень начинает движение вниз и засасывает топливную смесь в цилиндр. При этом всего лишь небольшая капля бензина поступает в емкость цилиндра. Это первый такт работы.
Во время второго такта поршень достигает самой нижней точки, при этом впускное отверстие закрывается, поршень начинает движение вверх, в результате чего топливная смесь сжимается, так как ей в закрытой камере некуда деваться. При достижении поршнем максимальной верхней точки топливная смесь сжата до максимума.
Третий этап – это поджигание сжатой топливной смеси с помощью свечи, которая испускает искру. В результате горючий состав взрывается и толкает поршень с большой силой вниз.
На заключительном этапе деталь достигает нижней границы и по инерции возвращается к верхней точке. В это время открывается выпускной клапан, отработанная смесь в виде газа выходит из камеры сгорания и через выхлопную систему попадает на улицу. После этого цикл, начиная с первого этапа, повторяется снова и продолжается в течение всего времени, пока водитель не заглушит двигатель.
В результате взрыва бензина поршень движется вниз и толкает коленчатый вал. Тот раскручивается и передает нагрузки на колеса автомобиля. Именно так и выглядит устройство двигателя автомобиля.
Особенности работы многоцилиндровых двигателей
В большинстве легковых машин устанавливаются четырехцилиндровые двигатели. Это сделано для того, чтобы работа была более ровной и плавной. Причина данного решения связана с тем, что в моторе полезная энергия выделяется только в третьем такте рабочего хода, в остальных тактах она затрачивается. Это означает, что если оборудовать автомобиль одноцилиндровым двигателем, при его работе будут чувствоваться сильные толчки при работе. Это приведет к появлению излишней вибрации и снизит ресурс двигателя.
Решить проблему удалось применением четырехцилиндровой компоновки двигателя. Его работа организована таким образом, что рабочий ход одного из поршней дает дополнительную энергию трем остальным поршням. Этим достигается плавность и снижается интенсивность вибраций при работе двигателя.
Лучшие китайские лодочные моторы
После того, как китайские гранды довели свою продукцию до европейских стандартов, большим спросом стали пользоваться лодочные моторы от уже известных брендов этой страны. Особенно отличились качественными и долговечными агрегатами такие марки, как Sea-Pro, Yamabisi и Hidea. Они представили на мировом рынке не менее качественные в сравнении с конкурентами, но более доступные и недорогие модели. В рейтинге будут представлены те агрегаты, что прошли тестирования экспертами и пользователями.
Sea-Pro F 20S&E
Достойный вариант подвесного лодочного мотора, обеспечивающий производительность в 20 л. с. Обеспечение высокой грузоподъемности лежит на оптимальном крутящемся параметре. Такой агрегат можно установить на любое судно, если высота транца будет составлять 381 мм. Максимальное количество оборотов при работе – 5000-6000, рабочий объем при этом достигает отметки 360 кубов. Sea-Pro F 20S&E соответствует стандартам экологичности, безопасности и функциональности. К важным характеристикам можно отнести электронный тип зажигания, бензобак объемом 24 л, дистанционный способ управления, водная система охлаждения.
Достоинства
- Неприхотливость к бензину и маслу;
- Электронное зажигание в комплекте;
- Улучшенная система охлаждения;
- Минимальные шумы;
- Высокие антикоррозийные свойства.
Недостатки
- Большие габариты и вес;
- Проблема с расходниками.
Несмотря на популярность и большой спрос, порой найти расходные материалы и детали к агрегату не удается. А многие альтернативные детали не смогут обеспечить рабочий ресурс. Сам же производитель устанавливает дорогостоящие и надежные компоненты.
Yamabisi T2BMS
Молодой китайский бренд по производству водомоторников представил недорогую 2-тактную модель Yamabisi T2BMS. Ее небольшие размеры и вес позволяют с легкостью транспортировать и устанавливать к малым и средним суднам. Рабочие обороты достигают отметки 4000-5000 об/мин, при этом мощность работы равна 1,5-2 л.с. В моторе находится один цилиндр, вместительность топливного бака под бензин 1,1 л. Управление ручное, для этого установлен специальный румпель.
Достоинства
- Легкий и небольшой по размеру;
- Низкая цена;
- Хорошая производительность;
- Экономичность расхода;
- Легкость в эксплуатации.
Недостатки
- Маленький топливный бак;
- Румпельное управление.
Так как фирма функционирует не так давно в сравнении с другими конкурентами, отзывов о моторах пока мало.
Hidea HD30FES
Это 2-тактный двигатель с 2 цилиндрами и трехступенчатой коробкой передач, который сегодня находится на пике своей популярности по показателям спроса. Многие пользователи уже оценили электронное зажигание, базовое оснащение для плавания по мелководью и на большие расстояния, эффективную систему охлаждения жидкостью, мощность в 30 л.с., количество оборотов до 5000 за минуту. В комплектации находится объемный бензобак 24 л, румпельный тип управления, дополнительные инструменты. Высокие показатели экологичности обусловлены тем, что отработанные газы выходят под воду.
Достоинства
- Неприхотливая конструкция;
- Хорошая разгонная динамика и тяговые показатели;
- В коробке есть задняя передача для хорошей маневренности;
- Надежная система безопасности;
- Длительный запас хода.
Недостатки
- Потребляет больше масла и бензина в сравнении с 4-тактными моделями;
- Наблюдается повышенный износ комплектующих.
Некоторые отзывы говорят о том, что система охлаждения справляется со своими задачами не настолько хорошо, как этого хотелось бы, из-за чего детали агрегата быстро выходят из строя. После тестирований было установлено, что за час работы потребляется около 10 л бензина.
Двигатели в автомобилях Лада Гранта
Двигатель под индексом 11186
Бензиновый двигатель объемом 1,6 литра с 8 клапанами. Мощность силового агрегата – 87 л. с., с крутящим моментом в 140 Нм. Обладает экологическими стандартами Евро-4. Является логическим продолжением развития конструкции двигателя под индексом 11183.
Устанавливается на автомобили Lada Granta и, до недавнего времени, Lada Kalina, которая после объединения с обновленной линейкой «Гранта» была упразднена.
На 2019 год ставится на модели Гранта различных модификаций – от хэтчбеков и седанов до моделей в кузове лифтбек и универсал.
Среди плюсов можно назвать простую конструкцию, надежность и экономичность относительно своих западных конкурентов. Ремонтопригодность также никуда не ушла, однако цены на запчасти, по данным сервисменов, подросли, что дает пищу к размышлению.
Ресурс двигателя без капремонта соответствует порядка 200 тыс. км, но моторы при должном обслуживании нередко выхаживают значительно больше, не требуя капитального ремонта.
Наиболее часто диагностируемыми проблемами мотора являются плавающие обороты, шумность при работе, стуки, поломки помпы (может привести к столкновению поршней с клапанами), поломки катушки зажигания, термостата и выход из строя датчика массового расхода воздуха.
Двигатель под индексом 11194
Ранее на различные модификации Калины ставился 1.4-литровый инжекторный бензиновый двигатель мощностью 89 л. с. Соответствовал экологическим нормам Евро-3 и Евро-4. Однако после объединения двух моделей под одним номенклатурным названием на официальном сайте производителя в разделе «Комплектации и цены» www.lada.ru данный 16-клапанный мотор отсутствует.
Двигатель под индексом 21126
Шестнадцатиклапанный инжекторный бензиновый двигатель объемом 1,6 литра, мощностью 98 л. с., с крутящим моментом в 145 Нм.
Начинал свою карьеру под капотом автомобилей семейства Priora, впоследствии перейдя в модельный ряд Гранта.
Отличительными особенностями можно назвать применение в современной версии силового агрегата более надежных зарубежных комплектующих. Это является как весомым плюсом, так и минусом двигателя. Стоимость обслуживания при ряде поломок будет выше из-за более дорогих запчастей. В частности, переборка шатунно-поршневой группы от Federal Mogul владельцам обойдется дороже ранее применяемых отечественных аналогов.
В прошлом году стало известно, что поршни иностранного поставщика будут доработаны, у них появится проточка под клапаны, что сведет к минимуму проблему погнутых клапанов и пробитых поршней при обрыве ремня ГРМ. Это является безусловным плюсом для данной модели. Отметим также, что улучшенная поршневая будет устанавливаться в 1,6-литровые двигатели целого ряда моделей – от Lada Granta и Largus до Vesta, XRAY.
«На всех а/м LADA с мотором 1.6 LADA, выпущенных после 15.08.2018, конструктивно исключена возможность контакта поршня и клапана», – говорилось в сообщении на сайте лада.онлайн
Тем не менее минусы достаточно стандартны для моторов Лада: плавающие обороты из-за неисправности ДМРВ, перегрев из-за выхода из строя термостата, троение мотора из-за проблем с электроникой и электрикой, а также шумная работа двигателя из-за износа гидрокомпенсаторов.
Пробег при своевременном ТО без вмешательства в мотор – 200 тыс. км.*
*Здесь стоит обратить внимание на то, что пробеги двигателей АвтоВАЗ достаточно условные. Один из самых показательных случаев, получивших известность в СМИ, относится как раз к 1.6-литровому мотору под капотом Lada Vesta
Поломка силового агрегата произошла на 400-й тысяче километров, и то лишь по причине использования некачественного топлива. Подробности читайте на страницах нашего издания: Может ли Лада Веста проехать более 500 тыс. км: отчет
Поэтому мы бы рекомендовали владельцам обслуживать свои автомобили вовремя, заправляться только на проверенных АЗС и использовать исключительно официальные запчасти. Тогда и машина беспроблемно отслужит вам не только положенный срок, но и очень приятно удивит своей надежностью.
Двигатель под индексом 21127
И вновь модернизация, ставшая продолжением ранее рассмотренного агрегата 21126. Главным образом, изменена мощность. Плюс 8 лошадиных сил с итоговыми 106 «лошадями» под капотом. Этого удалось добиться благодаря изменениям впуска, в частности установкой впускного ресивера изменяемой длины. При этом крутящий момент бензинового мотора поднялся на 3 Нм, до 148 единиц.
Для избавления от проблемы плавающих оборотов датчик ДМРВ был заменен на комбинацию датчиков абсолютного давления и температуры воздуха (ДАД+ДТВ).
Плюсы и минусы
ДВС, как и любой тип двигателя, имеет свои преимущества и недостатки.
К плюсам относятся следующие особенности:
1. Небольшой вес. Обычно такие устройства занимают мало места и имеют низкий вес.
2. Высокая мощность. На сегодняшний день почти все ДВС обладают высоким значением лошадиных сил. Чем «сильнее» «движок», тем дороже он стоит и больше потребляет топлива.
3. Есть возможность преодолеть большие расстояния. Эта проблема особо актуальна для тех, кто ездит в другие города ежедневно.
4. Быстрая заправка. Сегодня заправки расположены повсеместно, поэтому автолюбителям не придется бояться за пустой бак. Заправка длится не более 10 минут.
5. Простота эксплуатации. Большинство моторов, независимо от их типа, имеют схожую систему. Поэтому разобраться в работе двигателя сможет каждый водитель.
6. Доступность. Сегодня автомобилем с ДВС никого не удивишь, они эксплуатируются повсеместно. На вторичном рынке их стоимость еще дешевле, так что каждый человек может позволить себе купить такое авто.
7. Большой ресурс работы. Моторы, выпускаемые сегодня, способны функционировать ни один год подряд, а десятки лет. Возможно, кто-то скажет, что их надежность все же снижается, но это не исключает тот факт, что качество по-прежнему остается «на уровне».
Перечислив все преимущества ДВС, перейдем к недостаткам, которые, к сожалению, также встречаются у данного типа двигателя.
Минусы у ДВС следующие:
1. Высокая степень выбросов в атмосферу во время езды автомобиля. Дело в том, что топливо не до конца сгорает, и в этом заключается главная проблема. Чтобы авто двигалось, требуется всего лишь 15% горючего, а все остальное уходит в воздух. Отработанный газ содержит множество вредных и токсичных веществ, а также тяжелых металлов.
2. Требуется коробка переключения передач. Устройство обязательно, так как нужно, чтобы менялось передаточное число. Оно регулирует обороты двигателя, который перенаправляет энергию на колеса, а они вращаются либо быстро, либо медленно.
3. Регулярная замена масла. Менять масло нужно каждые 10 000 км. Это нужно обязательно делать, так как жидкость загрязняется, а мелкие частицы грязи попадают в «движок».
4. Высокая цена на топливо. Бензин и солярка с каждым годом возрастают в цене, соответственно, совсем скоро передвижение на авто с ДВС станет роскошью. Чтобы сэкономить на топливе, можно установить газовое оборудование, так как цена газа вдвое ниже остального горючего.
5. Низкий КПД. Этот параметр наглядно показывает эффективность работы двигателя относительно вырабатываемой энергии. Показатель выражается в процентах. К примеру, электродвигатели имеют КПД около 95%, но в ДВС такие значения невозможны.
6. Ограниченный ресурс дешевых моторов. Изготовители, выпускающие двигатели по низкой стоимости, используют некачественные детали. Они быстро изнашиваются и «выходят из строя». Но если водитель будет использовать смазку, а также вовремя менять расходные материалы, то «движок» прослужит дольше.
Таким образом, мы выяснили, что ДВС имеет как много преимуществ, так и много недостатков. Несмотря на это, он является одним из самых эффективных устройств на сегодняшний день.
Основные параметры ДВС
Мощность и крутящий момент двигателя
Изменяется в лошадиных силах или в Ваттах. Мощность — основной параметр двигателя. Мощность двигателя показывает то количество энергии который можно «снять» с вала двигателя при оптимальном режиме работы двигателя. Показывает, какую работу двигатель может выполнить за промежуток времени, а более точнее, сколько энергии успеет передать сгорающее топливо кривошип — шатунной системе через поршень за временной промежуток рабочего такта. Мощность находится в прямой зависимости от крутящего момента.
Крутящий момент — сила, с которой проворачивается вал двигателя. Зависит от плеча воздействия шатуна на кривошип вала двигателя. Или какое тормозное усилие нужно приложить к валу двигателя, чтобы его остановить.
Диаграмма зависимость мощности и крутящего момента от числа оборотов коленчатого вала двигателя Audi 4,2 л V8 FSI.
Объем двигателя
Объем цилиндра — это закрытый объем, в котором рабочее тело (сгорающая топливно-воздушная смесь) действует на часть замкнутого пространства — поршень Объем двигателя складывается из всех объемов всех цилиндров.
Сложив объем углубления в головке над поршнем и объем полости цилиндра, получают объем камеры сгорания.
Рабочим объемом именуют пространство, которое высвобождается передвигающимся поршнем в цилиндре.
Полный объем равен сумме рабочего объема и объема камеры сгорания.
Литраж определяют сложением всех рабочих объемов цилиндров.
Количество цилиндров
В современных моторах количество цилиндров варьируется в широких диапазонах. Теоретически их может быть от 1 до не ограниченного количества. Но на практике в основном применяют в 4ех тактных двигателях компоновку от 4 до 12 цилиндров. Количество цилиндров зависит от мощности, степени сжатия и скорости оборота коленчатого вала. Огромную мощность, высокие обороты и высокую степень сжатия очень сложно организовать в цилиндре большого диаметра.
Мощность. Она зависит от количества и энергии рабочего тела (сгорающей газовой смеси), рабочее тело сильно нагревает поршень и цилиндр, чем больше поршень по диаметру, тем больше вероятность его нагрева и прогорания в центре. Именно с центра поршня тяжело снять излишки тепла.
Обороты коленчатого вала. Чем больше обороты, тем выше линейные и осевые скорости в кривошип-шатунном механизме и тем больше инертные силы, тем выше нагрузки действующие на поршень, шатун, вал, цилиндр. Поэтому тихоходные живут дольше своих «оборотистых собратья».
Степень сжатия. Чем больше нужно сжимать газ, тем большие нагрузки испытывает поршень и кривошип-шатунный механизм.
С выше сказанным вывод один — чем меньше диаметр цилиндра тем меньшие нагрузки испытывают элементы кривошип-шатунной группы. Но для создания большой мощности нужен больший объем камеры сгорания. Многоцилиндровость — это техническое решения, которое позволило решить главную задачу — увеличить мощность двигателя, не увеличивая при этом линейные и осевые инерционные силы и как итог механические нагрузки, а также поддержания в разумных пределах тепловых нагрузок, действующие на двигатель.
Степень сжатия
Степень сжатия очень сильно влияет на то, какое топливо следует применять для бензинового двигателя.
Степень сжатия определяют следующим способом, если разделить полный объем цилиндра на объем камеры сгорания. Она показывает уменьшение объема во время движения поршня. Степень сжатия сильно влияет на экономичность, экологичность и КПД двигателя.
Также топливная смесь может подаваться в цилиндры под давлением, что увеличивает количество свежего заряда.
Свежий заряд подаеться в цилиндры двигатели двумя способами:
• Без наддува: воздух или смесь всасывается в цилиндре под дествием разряжения и наполняет цилиндр с атмосферным давление.
• С наддувом: процесс протекает под давлением, в цилиндры подается газовая смесь с давлением в несколько раз выше атмосферного.
Дополнительные параметры ДВС
На выбор двигателя для механических средств также влияют дополнительные параметры, которые в одних системах могут прижиться, а в других создадут ряд проблем.
Способы смесеобразования
• Внешний: горючая смесь образуется за пределами цилиндров. К таким относятся карбюраторные и газовые двигатели.
• Внутренний: горючее впрыскивается непосредственно внутри цилиндров. Инжекторный тип смесеобразования.
Материал двигателя
Изготовление современных двигателей возможно из 3-х типов материалов:
• чугуна или других ферросплавов. Они наиболее прочные, но при этом имеют немалый вес.
• алюминия и его сплавов. Вес небольшой, прочность средняя.
• магниевых сплавов. По весу они самые маленькие, а вот прочностью они наделены высокой. Но цена таких двигателей огромна.
Двухтактный ДВС его конструктивные особенности и описание принципа работы
Большинство бензопил и бензокос оснащаются приводными устройствами двухтактного типа. Два такта — это этап сжатия топливной смеси и рабочий ход поршня (когда он опускается вниз). Чтобы понять, чем отличается двухтактный двигатель от четырехтактного, рассмотрим изначально строение мотора. Основные детали двигателя — это цилиндр, поршень, коленчатый вал и шатун. За сжигание топлива отвечает свеча зажигания, а транспортировка смеси и отвод газов происходит посредством впускного и выпускного каналов. Конструктивная схема двухтактного двигателя отображена на фото ниже.
Двигатель двухтактного типа имеет упрощенное строение в отличие от четырехтактного. Принцип работы у него простой, и начинается с того, что осуществляется перемещение поршня из нижней мертвой точки в верхнюю. В стенках цилиндра присутствует три отверстия — впускной, выпускной и продувочный канал. Впускной расположен ниже, чем выпускной, а продувочный находится между ними, как показано на фото выше. Впускной и продувочный канал соединяется с кривошипно-шатунной камерой. Далее подробное описание принципа работа ДВС.
Первый такт. Первоначально топливо из карбюратора транспортируется в камеру КШМ. Через продувочное отверстие в цилиндр из камеры КШМ засасывается предварительно-поступившая топливно-воздушная смесь. Прекращается подача смеси тогда, когда поршень перекрывает отверстие продувочного канала. Далее движение поршня осуществляет перекрытие выпускного канала. Часть топливно-воздушной смеси при этом уходит в выпускной канал. После перекрытия выпускного канала начинается процесс сжатия горючей смеси. Эта смесь состоит из бензина, масла и воздуха. При достижении поршнем верхней мертвой точки, происходит воспламенение смеси за счет создания искры свечей зажигания.
В тот момент, когда в верхней части цилиндра осуществляется сжатие, в нижней части камеры КШМ создается разрежение. Это разрежение позволяет засосать очередную порцию топлива из карбюратора для следующего воспламенения. Засасываемое топливо в камеру кривошипно-шатунного механизма одновременно выполняет смазывание коленчатого вала и шатуна. Именно поэтому в состав горючей смеси добавляется специальное масло для двухтактного мотора. Двухтактные двигатели не имеют масляного картера, что является одним из главных их отличий от четырехтактных. Все эти процессы совершаются в один такт.
Второй такт. Сгоревшие газы толкают поршень вниз, тем самым осуществляется рабочий ход. Когда открывается выпускное отверстие, в него выходят выхлопные газы, поступающие по каналу в глушитель. Опускающийся вниз поршень создает давление в камере КШМ. За счет этого давления осуществляется выдавливание топливно-воздушной смеси ТПС из камеры КШМ в продувочный канал. В цилиндр следующая порция ТПС выталкивается сразу при открытии доступа к продувочному отверстию. При заполнении рабочей камеры цилиндра порцией топливной смеси происходит одновременное вытеснение оставшихся отработанных газов. Заканчивается второй такт при достижении поршнем нижней мертвой точки.
Визуальный процесс работы двухтактного двигателя представлен на анимированном изображении ниже.
У такого типа ДВС есть свои достоинства и недостатки, которые описаны ниже. Зная строение и принцип работы двухтактного двигателя, разберемся с четырехтактными моторами.
https://youtube.com/watch?v=KPgli32827k%3F
2012 год: двигатель с высокой степенью сжатия – воспламенение бензина от сжатия
Наука не стоит на месте. Если бы наука не развивалась, то сегодня мы бы до сих пор жили в Средневековье и верили в колдунов, гадалок и что земля плоская (хотя сегодня все равно есть немало людей, которые верят в подобную чушь).
Не стоит на месте наука и в автопромышленности. Так, в 2012 году в мире появилась очередная прорывная технология, которая, возможно, совсем скоро перевернет весь автомир.
Речь идет о двигателях с высокой степенью сжатия.
Мы знаем, что чем меньше сжимать воздух и топливо внутри двигателя внутреннего сгорания, тем меньше мы получим энергии в тот момент, когда топливная смесь воспламеняется (взрывается). Поэтому автопроизводители всегда старались делать двигатели с немаленькой степенью сжатия.
Но есть проблема: чем выше степень сжатия, тем больше риска самовоспламенения топливной смеси.
Поэтому, как правило, ДВС имеют определенные рамки в степени сжатия, которая на протяжении всей истории автопромышленности была неизменяемой. Да, каждый двигатель имеет свою степень сжатия. Но она не меняется.
В 1970-х годах в мире был распространен неэтилированный бензин, который при сгорании дает огромное количество смога. Чтобы как-то справиться с ужасной экологичностью, автопроизводители начали использовать V8 моторы с низким коэффициентом сжатия. Это позволило снизить риск самовоспламенения топлива низкого качества в двигателях, а также повысить их надежность. Дело в том, что при самовоспламенении топлива двигатель может получить непоправимый урон.
Но затем при массовом появлении электронного впрыска автопроизводители с помощью компьютера стали применять различные настройки, автоматически регулирующие качество топливной смеси, что позволило существенно улучшить экономичность двигателей и снизить уровень вредных веществ в выхлопе. Но главное, что удалось сделать с помощью компьютерных настроек и регулировки топливной смеси, – это снизить до минимума риск самовоспламенения топлива. В итоге со временем стало невыгодно использовать большие мощные моторы с низкой степенью сжатия. Так автопромышленность ввела новую моду – уменьшение количества цилиндров. Чтобы сохранить мощность в моторах, автопроизводители стали использовать турбины. Но главное – благодаря электронике, которая управляет качеством топливной смеси, автопроизводители снова могут создавать моторы с большой степенью сжатия, не опасаясь самовоспламенения топлива.
Но в 2012 году компания Mazda удивила весь мир, представив фантастический мотор SKYACTIV-G, который имеет невероятно высокий коэффициент сжатия для серийного двигателя. Степень сжатия этого мотора составляет 14:1. Это позволяет мотору извлекать энергию почти из каждой капли бензина без образования смога.
Следующим шагом для Mazda стал новый мотор SKYACTIV-X, который использует контролируемое зажигание (система SPCCI). Благодаря этой системе появилась возможность воспламенять бензин практически за счет одного только сжатия. То есть как в дизельных моторах. Также в двигателях SKYACTIV-X есть возможность воспламенять топливо обычным образом. Причем электроника автоматически выбирает, как выгоднее воспламенять бензин в камере сгорания. Все зависит от потребностей водителя и условий движения.
Например, если вам нужна сила (крутящий момент), то двигатель SKYACTIV-X будет воспламенять топливо от силы сжатия (почти как дизель). Если вам нужна мощность, то мотор с высокой степенью сжатия будет воспламенять топливо обычным образом. Причем реально для придания мощности будет использована последняя капля бензина.
Даже спустя столетие и даже с появлением альтернативных видов топлива, а также с появлением электрокаров двигатели внутреннего сгорания остаются главными силовыми агрегатами в автопромышленности. И несмотря на то что многие эксперты считают, что ДВС изжил себя и в скором времени должен исчезнуть из автомира, нам кажется, что двигатель внутреннего сгорания еще не развился до конца. Также мы считаем, что мир в ближайшие 100 лет все равно не будет готов полностью отказаться от ДВС, работающих на бензине.
И кто его знает, что нам подготовят автомобильные компании в ближайшем будущем. Ведь их инженеры не зря получают бутерброды с черной икрой. Вполне возможно, что уже скоро очередной автопроизводитель удивит нас какой-нибудь новой технологией в ДВС.