Как устроены и как работают современные электромобили

Базовая модель авто

Под базовой моделью автомобиля подразумевается любая машина, которая будет взята за основу при изготовлении электромобиля.

Так как в основе любого электромобиля лежит его легкость, на которую прямо пропорционально влияют габариты, материал из которого он изготовлен, то желательно за основу брать не большие автомобили.

Согласитесь, трудно будет из Toyota Land Cruiser Prado сделать электромобиль.

Хорошо для таких целей подойдут отечественные ВАЗ –ы, знаменитые запорожцы, Славута, ОКА.

Из зарубежных Fiat 126 и другие малолитражки до 2000 года выпуска.

Можно сделать и свой оригинальный кузов, но сложность работ и их дороговизна многих отталкивает от данной идеи.

Масштабы распространения

За последние несколько лет рынок электрических машин расширился и распространился на все развитые страны мира. Если еще недавно подобная покупка была экстравагантным шагом для любителей нового и необычного, то сегодня это уже проверенный и выгодный шаг для комфортной езды и экономии средств.

По имеющейся статистике, в 2020 году рынок рассматриваемых авто вырос сразу на 60%! На данный момент динамика сохраняется и в перспективе этот процесс станет еще более массовым. По всему миру в 2017 было продано около 750 000 новых авто, из них на гибриды приходится примерно 290 000. Все крупные концерны, видя такие тенденции рынка, активно начали разрабатывать свои варианты и представлять их на автовыставке по всему миру. Свои творения уже показали Мерседес, Фольксваген, Порше, Астон Мартин и многие другие производители. В России также наблюдается повышенный интерес к этой тематике. Интересный факт!На постсоветском пространстве по отношению к машинам заметен некоторый консерватизм и популярность бензина и дизеля здесь не спадает.

Салон

Внутри все очень напоминает другие модели JLR. Вот 2-этажная центральная консоль, как у Velar. Узнаю знакомую по другим «британцам» мультимедийную систему и цифровой «климат». Да и кругляши-клавиши 2-зонного климат-контроля уже видел. Правда, этой шайбой теперь можно не только включать подогрев кресел, но и активировать вентиляцию (нужно потянуть шайбу на себя). Лично мне не нравится запутанное меню нынешней мультимедийной системы JLR. Есть очень спорные решения, да и картинка порой тормозит («спасибо» одному-единственному процессору, отвечающему за всю эту электронику).

Аккумуляторная батарея электрокара и способы её подзарядки

На современных электромобилях широко используются высокоэффективные литий-ионные аккумуляторы, которые предлагают своим обладателям срок службы до десятка лет. В то же время, у этих изделий имеются и существенные недостатки: тяговая Li-ion батарея является самым капризным и дорогостоящим компонентом любого электрокара.

Однако литий-ионные АКБ не единственная разновидность электронакопителей наилучшим образом подходящих для электрокара: в настоящее время ведутся работы по внедрению литий-полимерных аккумуляторов и суперконденсаторов. Многие лидеры мирового автопрома грозятся в ближайшее время поставить такую продукцию на поток и тогда, электрокары ещё больше приблизятся к техническому совершенству.

В зависимости от ёмкости батареи установленной на машине, на её полную подзарядку может потребоваться 8-12 часов, но процесс можно ускорить в значительной степени, правда с ущербом для накопителя. Есть специальные зарядные комплексы, позволяющие «заправить» агрегат на 80% всего за 30 минут. В некоторых странах можно воспользоваться специальными «обменными пунктами», на которых севший аккумулятор можно легко поменять на заряженный такого же типа.

Разработчики идут на разные ухищрения, чтобы увеличить пробег машины на одном заряде и одним из таких фокусов, является использование солнечных панелей, позволяющих хоть и немного, но подзаряжать электромобиль во время движения.

Первые электромобили и первые рекорды

Имя первого изобретателя электромобиля точно никто не знает, но известно, что шотландец Роберт Андерсон, американец Томас Девенпорт и англичанин Роберт Девидсон приблизительно в один и тот же период времени представили миру свои электрические конструкции. Эти безлошадиные электрические экипажи отличались огромным весом, малой скоростью передвижения, не превышающей и 4 км/час, и неособенной практичностью. Главная проблема заключалась в отсутствии подзаряжаемых аккумуляторов, которые бы отличались сравнительно небольшими размерами, позволяющими заряжать электромобили. История их развития продолжилась после того, как в 1865 году французом Гастоном Планте был представлен прообраз современного аккумулятора. Позднее (1878 г.) его усовершенствовал Камилл Фор. Подобные аккумуляторы стали наиболее распространёнными и до сих пор используются в транспортных средствах для запуска двигателей.

В США в 1888 году изобрели трёхколёсный электромобиль с 10 свинцово-кислотными аккумуляторами, весящими примерно 40 кг. Конструкция могла развивать скорость до 8 миль в час при мощности двигателя в 0,5 л. с. Пожалуй, её можно было назвать, скорее, трёхколёсным электровелосипедом.

В 1889 году инженер Ипполит Романов создал первый русский электромобиль на две персоны. Он имел передний привод, причём пассажиры также располагались впереди экипажа, в то время как водитель сидел сзади и возвышался над ними на высоком сиденье. Отсек с аккумуляторами находился позади салона, а сами они были легче аналогов, благодаря чему вес автомобиля удалось снизить до 720 кг.

Для сравнения – популярный в те годы «Жанто» (Франция) весил ровно вдвое больше. Он мог разогнаться до 35 км/ч, однако, проехать мог примерно с километр. Каждый двигатель при 1800 оборотах давал мощность 6 л. с.

Чуть позднее, в 1890 году американец У. Моррисон представил публике 6-местный фургон, который мог разгоняться до 23 км/ч.

Первым, кто решился опробовать электрические самодвижущиеся повозки, стал граф Гастон де Шаслу-Лоба – французский автогонщик. Он же и установил первый скоростной рекорд, зарегистрированный официально в 1898 году. Тогда его автомобиль разогнался до невероятных 63 километров в час.

Через 4 месяца этот рекорд был улучшен другой маркой электромобиля «Le Jamais Contende», причём он сразу же перевалил за знаковые 100 км/ч и составил 105 км/ч. Это удалось бельгийцу Камилю Женатци, который управлял экипажем собственной конструкции с обтекающими контурами. Чтобы поставить рекорд, инженер поставил в машину два электромотора, дававшие в сумме 67 л. с.

Новый вид транспорта быстро приглянулся бизнесменам, поэтому уже в 1898 году по улицам Берлина, Лондона, Парижа и Нью-Йорка уже бегали электрические таксомоторы. Их заряжали в специальных комнатах.

Принцип работы электромобилей

Внешне электромобиль не отличается от автомобиля. Вся разница в принципе их работы. Автомобили получают энергию от сгорания углеводородного топлива, а электрокары — от электричества. Их предшественниками были троллейбусы. Но они получали питание напрямую с помощью «рогов», подключенных к электрическим проводам. Электрокары же «запасают» энергию в своих батареях. 

Водители беспокоятся о том, безопасен ли электромобиль, не зная о принципе его работы. Двигатели таких моделей преобразовывают электричество в энергию механического вращения. В этом процессе принимают участие статор и ротор.

Когда электромотор включается, его статор активирует магнитное поле, действующее на обмотку ротора. Это создает вращающий момент, который и приводит машину в движение. У этих моделей нет коробки передач. В отличие от автомобилей, энергия поступает к колесам напрямую от мотора, что сокращает скорость изнашивания комплектующих. 

Мотор получает питание от аккумулятора, запасающего энергию. Чтобы восполнять ее, в каждом электромобиле установлено зарядное устройство, которое подключается к обычным розеткам. Аккумулятор и представляет главную опасность для человека. Батарея может воспламениться, что приведет к пожару внутри машины. 

Видео работы авто

   В перспективе есть идея увеличить скорость авто путем установки двух аккумуляторов на 12 В. Но так как не понятно по какой логике включать добавочный АКБ, созрела идея сделать эмулятор скоростей, по типу коробка автомат, на потребление движков поставить датчик тока и переключать пределы регулирования пульта м\у скоростями, попутно контролируя «жизнь» движков, поскольку на 24 В под большой нагрузкой они долго не протянут. Правда потребуется введения датчика скорости в ходовой редуктор. Введение датчика позволит также сделать действительно плавный тормоз, путем управляемого замыкания движков на полевой транзистор с хорошим охлаждением. А работу выше 12 В строго по амперметру то есть если ток потребления моторов не большой, то постепенно наращивать до заданного ограничения по току. Нужно будет еще хорошо логику продумать. По ходу возможностей одного контроллера AtMega не хватит на все функции. Нечто подобное реализовано в корейском авто Henes. Продолжение следует… С вами был Tygra.

Мотор-колесо Protean Electric

Казалось бы, МК для электромобилей имеет все шансы стать массовым продуктом, предлагая потребителю большое количество преимуществ. Однако многие разработчики так не посчитали и столкнувшись с непреодолимыми конкретно для них техническими трудностями, решили отказаться от подобных проектов. Жаль конечно, но, остались и энтузиасты, например в лице американской фирмы Protean Electric, которая уже очень близко подошла к созданию практической конструкции.

Их система называется Protean Drive, она была успешно испытана на таких машинах как Volvo C30, Mercedes-Benz SLS AMG Coupe, Vaxhaull Vivaro, а также Ford F-150. В конце 2012-го года, авторитетное заокеанское издание Car and Driver, внесло изобретение Protean Drive в десятку самых перспективных технологий 2013-го года. По ходу работы над многообещающим проектом, было оформлено 23 патента! Рабочий образец инженеры показали в апреле 2013-го года.

МК Protean Drive предназначается для эксплуатации на электрокарах и гибридах. Технология может быть легко адаптирована к уже производимым моделям либо может применяться для переоборудования транспортных средств с ДВС в гибридные модификации. Система позволяет организовать автомобилю любой тип привода: передний, задний и на все четыре колеса. Комплект состоит из электродвигателя, инвертора и блока управления с ПО. Всё это богатство непринуждённо вмещается внутри обычного 18-24-дюймового колеса. Protean Drive даёт возможность повысить энергетическую экономичность больше чем на 30%, в зависимости от возможностей АКБ и режима движения.

Разработка Protean Electric предлагает весьма привлекательные показатели удельной мощности — 110 лошадиных сил и тяги — 800 Нм. При таких показателях, оборудование имеет массу всего 31 кг. Устройство превосходит другие разработки и по возможностям рекуперации: для подзарядки аккумулятора используется до 85% энергии торможения. Естественно, данное обстоятельство положительным образом влияет на дальность пробега на одном заряде, конкретно, речь идёт о 30-процентном увеличении преодолеваемой дистанции.

Классификация электродвигателей

Вращающийся электродвигатель
Само коммутируемый Внешне коммутируемый
С механической коммутацией (коллекторный) С электронной коммутацией1 (вентильный2, 3) Асинхронный электродвигатель Синхронный электродвигатель
Переменного тока Постоянного тока Переменного тока4 Переменного тока
  • Универсальный
  • Репульсионный
    • Включение обмотки
  • БДПТ(Бесколлекторный двигатель + ЭП |+ ДПР)
  • ВРД(Реактивный двигатель с ротором с явновыраженными полюсами и сосредоточенной обмоткой статора + ЭП |+ ДПР)
  • Трехфазный(многофазный)
  • Двухфазный(конденсаторный)
  • Однофазный
  • СДОВ
  • СДПМ

    • СДПМВ
    • СДПМП
    • Гибридный
  • СРД
  • Гистерезисный
  • Индукторный
  • Гибридный СРД-ПМ
  • Реактивно-гистерезисный
  • Шаговый5
Простая электроника Выпрямители,транзисторы Более сложнаяэлектроника Сложная электроника (ЧП)

Примечание:

  1. Указанная категория не представляет отдельный класс электродвигателей, так как устройства, входящие в рассматриваемую категорию (БДПТ, ВРД), являются комбинацией бесколлекторного двигателя, электрического преобразователя (инвертора) и, в некоторых случаях, — датчика положения ротора. В данных устройствах электрический преобразователь, в виду его невысокой сложности и небольших габаритов, обычно интегрирован в электродвигатель.
  2. Вентильный двигатель может быть определен как электрический двигатель, имеющий датчик положения ротора, управляющий полупроводниковым преобразователем, осуществляющим согласованную коммутацию обмотки якоря .
  3. Вентильный электродвигатель постоянного тока — электродвигатель постоянного тока, вентильное коммутирующее устройство которого представляет собой инвертор, управляемый либо по положению ротора, либо по фазе напряжения на обмотки якоря, либо по положению магнитного поля .
  4. Электродвигатели используемые в БДПТ и ВРД являются двигателями переменного тока, при этом за счет наличия в данных устройствах электрического преобразователя они подключаются к сети постоянного тока.
  5. Шаговый двигатель не является отдельным классом двигателя. Конструктивно он представляет из себя СДПМ, СРД или гибридный СРД-ПМ.

Аббревиатура:

  • КДПТ — коллекторный двигатель постоянного тока
  • БДПТ — бесколлекторный двигатель постоянного тока
  • ЭП — электрический преобразователь
  • ДПР — датчик положения ротора
  • ВРД — вентильный реактивный двигатель
  • АДКР —
  • АДФР —
  • СДОВ — синхронный двигатель с обмоткой возбуждения
  • СДПМ — синхронный двигатель с постоянными магнитами
  • СДПМП —
  • СДПМВ —
  • СРД — синхронный реактивный двигатель
  • ПМ — постоянные магниты
  • ЧП — частотный преобразователь

Электрический двигатель

Используя мощность от тягового аккумулятора, двигатель приводит в движение колеса автомобиля. В некоторых транспортных средствах используются мотор-генераторы, которые выполняют функции привода и регенерации.

Классический электродвигатель состоит из токопроводящей обмотки статора и вращающегося ротора, который приводится в движение магнитным полем статора и передаёт крутящий колёсам. Существует два типа электродвигателей: синхронный, в котором магнитное поле вращается одновременно с ротором и асинхронный, в котором магнитное поле вращается быстрее ротора.

Асинхронный мотор изменяет скорость вращения в зависимости от частоты переменного тока простым нажатием на педаль акселератора. Это позволяет получить при желании максимальный крутящий момент для разгона с места.

Современные электрокары в зависимости от мощности батареи и двигателей способны разгоняться с места до 100 км/ч за 5-7 секунд, что сопоставимо с разгоном автомобиля с мотором мощностью 250-350 л.с. Но самый быстрый в мире серийный электрокар Rimac C_Two способен преодолевать «сотню» за 1,85 секунды, быстрее некоторых 12-цилиндровых 6-литровых суперкаров!

Неоспоримым преимуществом электрокаров является также то, что крутящий момент вращения электромотора линейно передаётся напрямую колёсам.  В то время, как двигатель внутреннего сгорания преобразует поступательные движения поршней во вращение коленчатого вала и далее через систему шестерен и фрикционов трансмиссии ведущим колёсам. Для преодоления такой «полосы препятствий» автомобилю требуется больше мощности, а значит – больше топлива и объёма двигателя.

Бортовое зарядное устройство принимает входящую электроэнергию переменного тока, подаваемую через порт зарядки, и преобразует ее в мощность постоянного тока для зарядки тягового аккумулятора. Он также обменивается данными с зарядным оборудованием и отслеживает характеристики аккумулятора, такие как напряжение, ток, температуру и состояние заряда, во время зарядки аккумулятора.

Контроллер силовой электроники: этот блок управляет потоком электроэнергии, подаваемой тяговым аккумулятором, регулируя скорость электрического тягового двигателя и создаваемый им крутящий момент.

Система охлаждения поддерживает надлежащий диапазон рабочих температур двигателя, электродвигателя, силовой электроники и других компонентов. В холодное время года избыточное тепло батареи может отводиться в салон электромобиля. По этой причине в современных электрокарах отсутствует традиционная печка.

Трансмиссия электромобиля

В традиционном понимании в электрокарах отсутствует коробка передач и карданный привод колёс, поскольку электромотор работает эффективно в любом диапазоне скоростей. Поэтому у большинства электромобилей установлена односкоростная коробка, расположенная рядом с инвертором. Это позволяет включать режим заднего хода, меняя всего лишь фазы, а также направлять энергию торможения в заряд батареи.

Значительным преимуществом электродвигателя и одноступенчатой коробки является то, что можно использовать «свободный» дифференциал. И в случае пробуксовки одного из ведущих колёс, мгновенно отбирать мощность в одной из полуосей привода, уменьшая его проскальзывание.

Ходовая часть

Система подвесок в электрокарах традиционна и часто может быть заимствована у обычных автомобилей. Главное отличие подвески электрокаров в том, что эластокинематика вынуждена справляться с большим весом, в то время, как лучшая развесовка по осям позволяет инженерам точнее настраивать управляемость, чтобы справиться с инерционностью тяжёлого кузова.

Тормозная система электромобиля устроена хитрее обычной. Традиционные автомобили могут эффективно замедляться при нажатии на педаль тормоза, а энергия торможения направляется на нагрев тормозных колодок и дисков. В электромобилях электромотор может использоваться в качестве генератора для зарядки батареи. При сбросе педали акселератора электроника распознает замедление вращения магнитного поля относительно ротора и замедляет автомобиль. При этом педаль тормоза может использоваться лишь для полной остановки электрокара. Благодаря этому срок службы тормозных механизмов увеличивается в среднем в три раза.  

Аккумуляторы

В Tesla S разработчики используют батареи производства Panasonic, что в Японии. В новых моделях Tesla 3 используются уже американские аккумуляторы. Произведены они в Неваде по уникальной технологии. В общем и целом конструкция двигателя автомобиля «Тесла» новейшей модели такова, что ее стоимость может быть снижена на 25% благодаря лишь снижению количества элементов.

Несмотря на то, что количество элементов в аккумуляторе снизили, в моторе Tesla 3 добавилось лошадей. Теперь их 435. И снова компания Tesla побила достижение одного из главных бензиновых конкурентов – BMW. Таким образом, Tesla 3 имеет на 4 лошадиных силы больше, чем BMW M3 с шестицилиндровым (!) двигателем.

Вероятно, единственное, в чем Tesla 3 уступает предшественнику, это разгон с места до сотни. На «трешке» «Тесла» на разгон уйдет на 2 секунды больше (не 4, а 6 секунд).

В данный момент для Tesla 3 выпущены десятки тысяч специальных инверторов. Мощность их – 320 кВт. В 2021 году планируется выпустить 50000 обновленных и усовершенствованных электромобилей Tesla.

Доступ к чертежам электромобилей Tesla

Компания Tesla выложила чертежи автомобиля «Тесла» в открытый доступ в интернет. Произошло это потому что первоначальная идея компании была в том, чтобы дать миру экологически чистый транспорт. А когда информация об устройстве автомобиля была закрыта, получилось так, что основатели пошли как бы против своей идеи. Таким образом, становится понятно, что компания действительно борется, в первую очередь за идею улучшения мира, а не за чистой прибылью.

Компания Tesla Mobil выложила во Всемирную паутину несколько сотен своих разработок. Этот шаг, надеется совет директоров компании, подтолкнет индустрию электромобилей к более бурному развитию. Ведь до создания электромобиля Tesla по факту не было никаких поставленных электромобилей на конвейер, ни вообще мало-мальски близкого к конкурентоспособному авто машин. Появлялись единичные экспериментальные модели, которые были малоскоростными, и если их кто-то и покупал, то были это просто фанаты экологически чистого транспорта.

Глава компании Tesla Илон Маск считает, что широкое распространение подробной информации о платформах автомобилей «Тесла» не навредит его бизнесу. По мнению господина Маска, компании, занимающиеся созданием «зеленых» автомобилей для этого малочисленны. А своими реальными конкурентами, да к тому же и загрязнителями окружающей среды, руководство компании называет тысячи машин с двигателем внутреннего сгорания, которые производятся ежедневно.

Стоимость Tesla

Самая популярная модель автомобиля «Тесла» — это Tesla Mobil S. Ее минимальная стоимость – 62,4 тыс. $. Максимальный порог стоимости этого авто – 87,4 тыс. $. Зарядки автомобиля «Тесла» самой дорогой модификации хватает на 425 км. И именно эта модификация с места до сотни набирает за 4,2 секунды.

Когда Tesla S только появился на рынке в широком доступе, эта машина побила сразу нескольких бензиновых соперников в плане продаж. Таким образом, еще в 2013 году Tesla S стала популярнее Mercedes-Benz S-класса и BMW 7. А в Норвегии Tesla опередил в том же году популярнейший, как правило, Volkswagen Golf.

Польза электромобиля

Иногда начинает казаться, что жизнь в постапокалиптическом мире, который описывают некоторые писатели-фантасты, это не только фантазия творческих людей, но и неизбежное будущее. Уже давно понятно, что ресурсов Земли не хватит надолго, и в первую очередь закончатся ресурсы, благодаря которым мы получаем энергию. Но проживание в мире после энергетической катастрофы хочется мало кому, и, к счастью, есть способы оттянуть момент, когда ресурсы будут исчерпаны.

Развитые страны озадачены разработкой и внедрением такого транспорта, который будет экологичным и экономичным. К таким машинам относятся уже катающиеся по миру электромобили Tesla.

Схему двигателя автомобиля «Тесла» продумал еще сам Никола Тесла в первой половине прошлого века. Этот уникальный ученый настолько опередил свое время, что давно продумал за нас проблему исчерпания земных ресурсов, о которой в 30-х годах XX века еще очень мало задумывались.

Однако движущей силой по представлению Николы Тесла в электромобиле должен быть не электрический ток, который берется откуда-то извне, а некий эфир, о котором Тесла часто рассуждал. Именно эфир должен был по задумке электрофизика отправлять в двигатель колебания.

Актуальные электродвижки

Интересными вариантами сегодня являются электродвигатели которые могут заменяться на обычные, внутреннего сгорания. Конечно, цена таких машин является очень высокой. Но именно их можно назвать теми, у которых давняя проблема недостающего запаса хода успешно была решена.

Из всего вышесказанного можно сделать вывод, что уже в недалеком будущем электродвигатели неизбежно займут свое достойное место в производстве автотранспортных средств. Перед многими отечественными автолюбителями сегодня стоит желанная цель создать электродвигатель для автомобиля своими руками. Оказывается, это не такая уж и недостижимая мечта. За основу может быть взята любая машина, и даже «Ока».

Исчерпание углеводородного топлива, ухудшение экологической обстановки и ряд других причин рано или поздно заставят производителей разработать модели электромобилей, которые станут доступны для широких слоев населения. А пока остается только ждать или собственноручно разрабатывать варианты экологически чистой техники.Если же вы все-таки предпочитаете самостоятельно искать решения, а не дожидаться их со стороны, то вам понадобятся знания о том, какие двигатели для электромобиля уже изобрели, чем они отличаются и какой из них наиболее перспективный.

Отличия по типу тока

Существует несколько разновидностей электродвигателей: они могут питаться от постоянного, пульсирующего или переменного тока. Во всех случаях их работа основана на явлении электромагнитной индукции. Отличие состоит в конструкции таких механизмов и способе питания привода.

Двигатели постоянного тока

Во всех электродвигателях такого типа присутствуют якорь (вращающийся элемент) и индуктор (неподвижная часть), которые разделены воздушным пространством. Индуктор состоит из станины, которая является элементом магнитной цепи, а также главных и добавочных полюсов.

На них располагаются обмотки, необходимые для создания магнитного поля устройства. Индуктор двигателя постоянного тока создаёт неподвижное магнитное поле. Якорь состоит из магнитной системы и коллектора, где с помощью щёток образуется электрический ток.

Коллекторный электродвигатель имеет свои недостатки:

  • повышенный уровень шума при работе;
  • необходимость замены деталей (трущиеся щётки и коллектор);
  • помехи из-за искрения щёток и переключения обмоток якоря.

Электродвигатель постоянного тока имеет более высокий коэффициент полезного действия, а также имеет возможность более точно регулировать обороты, что отражается на стоимости такого устройства.

Видео: устройство и принцип работы двигателя постоянного тока

Двигатели пульсирующего тока

Такие электромоторы по своей конструкции схожи с двигателями постоянного тока. Различие между ними в том, что данный тип мотора имеет в своей конструкции дополнительную компенсационную обмотку и шихтованные полюса. Применяются двигатели пульсирующего тока в электровозах, где питаются выпрямленным переменным током.

Рекомендуем для прочтения:

  • Крутящий момент двигателя: что дает, какой должен быть и как повысить
  • Принцип работы роторного двигателя внутреннего сгорания
  • Атмосферный двигатель: принцип работы, плюсы и минусы
  • MPI двигатель — что это такое?

Двигатели переменного тока

Электрические моторы такого вида могут питаться одно-, двух- или трёхфазным током. Трехфазные, в свою очередь, делятся на синхронные и асинхронные.

Внешне они практически идентичны, статоры имеют одинаковую конструкцию и выполняют одну и ту же функцию — создают вращающееся магнитное поле. Отличие состоит в работе роторов. Несомненным преимуществом двигателей переменного тока является рекуперация, т. е. способность генерировать энергию в процессе торможения электромобиля и сохранение её в аккумуляторе.

Важно! Оптимальная температура для электромобиля составляет +21°С. Резкое потепление или похолодание негативно скажется на работе батареи: использование печки или кондиционера может сократить заряд аккумулятора

Синхронный двигатель

В агрегатах такого типа ротор и магнитное поле статора движутся с одинаковой скоростью. Синхронные двигатели мощностью в сотни киловатт имеют на роторе дополнительные обмотки возбуждения. В электродвигателях меньшей мощности полюса образуются постоянными магнитами. Подобные устройства используют там, где необходима постоянная частота вращения, независимо от нагрузки. Такие моторы способны генерировать реактивную мощность.

Асинхронный двигатель

В большинстве современных электромобилей используется асинхронный, или индукционный двигатель. Отличием такого электромотора является то, что скорость вращения ротора в нём меньше скорости вращения электромагнитного поля.

Скорость такого мотора зависит от частоты переменного тока, т. е. изменив частоту тока, можно изменить скорость вращения ведущих колёс, что позволяет легко контролировать скорость электромобиля. Скорость вращения электродвигателя может составить от 0 до 18 000 оборотов в минуту.

Видео: принцип работы асинхронного электродвигателя

Виды

Чтобы лучше разобраться в многообразии, которое нам дарит авторынок, стоит рассмотреть существующие виды электродвигателей для электромобилей.

Их можно условно классифицировать по типу тока:

  • устройства переменного тока;
  • конструкции постоянного тока;
  • решения универсального образца (способны функционировать от постоянного и переменного тока).

Электродвигатели переменного тока делятся на группы:

  • асинхронные – скорость вращения магнитного поля статора выше скорости вращения ротора;
  • синхронные – частоты вращения магнитного поля статора и ротора совпадают.

С учетом используемого количества фаз, электрические устройства разделяют на: одно-, двух-, трехфазные.

Если привести реальные образцы, используемые известными автопроизводителями, то хороший пример применения трехфазного агрегата асинхронного типа – Volt от Chevrolet. Он является гибридным автомобилем. Пример трехфазного синхронного двигателя — i-MiEV от Mitsubishi. А этот автомобиль является исключительно электрическим.

Силовая установка Chevrolet Volt

Следует отметить, что у разных производителей разные двигатели, отличающиеся массой, мощностью, габаритами и прочими параметрами.

Есть еще одна классификация – по конструкции щеточно-коллекторного узла. Такие агрегаты бывают:

  • Бесколлекторными. Представляют собой замкнутую систему, в которую входят: преобразователь координат, инвертор и извещатель положения.
  • Коллекторными. Щеточно-коллекторный узел играет роль в такой конструкции одновременно и извещателя положения ротора, и переключателя тока в обмотках. В основном используется ток постоянной частоты.

Ротор электродвигателя

В конструкциях электромобилей зачастую задействуются коллекторные моторы, хотя есть примеры и с иными моделями. Как вариант — автомобиль «Санрейсер», в котором установлен как раз бесколлекторный двигатель от компании General Motors. При массе 3,6 кг его КПД составляет 92%.

Нельзя не отметить еще один тип двигателя, который используется в некоторых современных моделях авто. Это система мотор-колесо. Пример — спорт-кар Volage. В такой конструкции предусмотрена возможность регенерации энергии торможения. Для этого используется тяговый двигатель Active Wheel. Он весит всего 7 кг, что позволяет добиться приемлемой массы колеса – 11 кг.

Самой распространенной сегодня конструкцией является решение с питанием от аккумуляторной батареи. Она нуждается в регулярной зарядке, способной реализоваться за счет внешних источников, генератора в конструкции и рекуперации энергии торможения. Генератор действует от ДВС, поэтому такая схема работы уже не относится к чисто электрическим. Подобные машины называют гибридными.

https://youtube.com/watch?v=kYuowXDTQDU

Производители электродвигателей

Большинство самодельных электромобилей сконструировано с применением коллекторного двигателя. Это объясняется доступностью, низкой ценой и простым обслуживанием.

Видным производителем линейки данных моторов является немецкая компания Perm-Motor. Ее продукция способна к рекуперативному торможению в генераторном режиме. Она активно используется для оснащения скутеров, моторных лодок, легковых автомобилей, электроподъёмных устройств. Если двигатели Perm-Motor устанавливали в каждый электромобиль, цена их была бы значительно ниже. Сейчас они стоят в пределах 5-7 тыс. евро.

Популярным производителем является компания Etek, которая занимается производством безщеточных и щеточных коллекторных двигателей. Как правило, это трехфазные моторы, работающие на постоянных магнитах. Основные преимущества установок:

  • точность управления;
  • легкость организации рекуперации;
  • высокая надежность за счет простой конструкции.

Завершает список производителей завод из США Advanced DC Motors, выпускающий коллекторные электромоторы. Некоторые модели обладают исключительной особенностью – они имеют второй шпиндель, что можно использовать для подключения на автомобиль-электромобиль дополнительного электрооборудования.

Подключение электромотора на самодельных устройствах

Перед использованием электродвигателя нужно навести справки о его типе и особенностях конструкции. Единственной доступной информацией при этом может быть лишь серийная маркировка на корпусе, остальное — мощность, тип, возможные системы управления двигателем – придется поискать в технических справочниках.

Проверка проводных выходов и корпуса на короткое замыкание — застрахует от аварий. Для этого, после визуального осмотра на предмет следов возгорания, при помощи мультиметра нужно сделать прозвон всех контактов и корпуса, затем проверить обмотки и выводы, и также конденсаторы при наличии.

Как заряжать электромобиль?

Электромобили имеют три режима зарядки, которые условно можно поделить на медленный, ускоренный и быстрый.

Самый простой и доступный тип зарядки электромобиля — это подключение к стандартной бытовой розетке. Обычно она занимает 7-12 часов, что зачастую ограничено мощностью обычной сети, которая составляет 2-3,5 кВт. Несмотря на долгий процесс, зарядка от бытовой сети самый распространенный тип пополнения электромобиля энергией.

Второй тип — это ускоренная зарядка (AC), при которой электромобиль подключается к более мощному источнику энергии: до 7.4 кВт, если речь идет об однофазном и до 22 кВт при 3-м фазном подключении переменного тока. В тоже время сама скорость зарядки здесь зависит от пропускной способности зарядного устройства электромобиля. Как правило, чем новее и мощнее электромобиль, чем более емкую АКБ он имеет, тем мощнее его зарядное устройство.
Примером может послужить самый популярный электромобиль в Украине Nissan Leaf, АКБ которого ёмкостью 24 кВт•ч при наличии зарядного устройства мощностью 6,6 кВт можно зарядить за 4 часа.

Стоит также упомянуть, что некоторые электромобили, например, Renault ZOE имеют встроенный инвертор до 43 кВт, а значит могут заряжаться быстро от источников переменного тока.

Третий тип — быстрая зарядка постоянным током (DC) со способностью зарядить АКБ до 80% емкости за полчаса. Для зарядки электромобиля постоянным током, он должен быть оборудован разъемом соответствующего стандарта (CCS Combo, CHAdeMO, Tesla DC Supercharger), отличного от портов медленной и ускоренной зарядки.

На данный момент единого стандарта для зарядки электрокаров нет, но его создание является приоритетной задачей в отрасли. Сейчас существует несколько основных стандартов зарядки соперничающих между собой:

  • Type 1 J1772
  • Type 2 Mennekes
  • CCS Combo
  • CHAdeMO
  • Tesla Supercharger
  • GB/T

Медленная зарядка (AC): 1. Type 1 J1772 (США/Япония) 2. Type 2 Mennekes (Европа) 7. GB/T (Китай) Комбинированная зарядка (AC/DC): 3. Type 1 CCS Combo 1 (США/Япония) 4. Type 2 CCS Combo 2 (Европа) Быстрая зарядка (DC): 5. CHAdeMO (США/Япония) 6. Tesla Supercharger (США/Япония) 8. GB/T (Китай)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *