Удельная теплоемкость вещества

Теплоемкость материалов — таблица

В строительстве очень важной характеристикой является теплоемкость строительных материалов. От нее зависят теплоизоляционные характеристики стен постройки, а соответственно, и возможность комфортного пребывания внутри здания

От нее зависят теплоизоляционные характеристики стен постройки, а соответственно, и возможность комфортного пребывания внутри здания.

Прежде, чем приступить к ознакомлению с теплоизоляционными характеристиками отдельных строительных материалов, необходимо понять, что собой представляет теплоемкость и как она определяется.

Удельная теплоемкость материалов

Теплоемкость – это физическая величина, описывающая способность того или иного материала накапливать в себе температуру от нагретой окружающей среды.

Количественно удельная теплоемкость равна количеству энергии, измеряемой в Дж, необходимой для того, чтобы нагреть тело массой 1 кг на 1 градус.

Ниже представлена таблица удельной теплоемкости наиболее распространенных в строительстве материалов.

Для того, чтобы рассчитать теплоемкость того или иного материала, необходимо обладать такими данными, как:

  • вид и объем нагреваемого материала (V);
  • показатель удельной теплоемкости этого материала (Суд);
  • удельный вес (mуд);
  • начальную и конечную температуры материала.

Теплоемкость строительных материалов

Теплоемкость материалов, таблица по которой приведена выше, зависит от плотности и коэффициента теплопроводности материала.

А коэффициент теплопроводности, в свою очередь, зависит от крупности и замкнутости пор. Мелкопористый материал, имеющий замкнутую систему пор, обладает большей теплоизоляцией и, соответственно, меньшей теплопроводностью, нежели крупнопористый.

Это очень легко проследить на примере наиболее распространенных в строительстве материалов. На рисунке, представленном ниже, показано каким образом влияет коэффициент теплопроводности и толщина материала на теплозащитные качества наружных ограждений.

Из рисунка видно, что строительные материалы с меньшей плотностью обладают меньшим коэффициентом теплопроводности.

Однако так бывает не всегда. Например, существуют волокнистые виды теплоизоляции, для которых действует противоположная закономерность: чем меньше плотность материала, тем выше будет коэффициент теплопроводности.

Поэтому нельзя доверять исключительно показателю относительной плотности материала, а стоит учитывать и другие его характеристики.

Сравнительная характеристика теплоемкости основных строительных материалов

Для того, чтобы сравнить теплоемкость наиболее популярных строительных материалов, таких дерево, кирпич и бетон, необходимо рассчитать величину теплоемкости для каждого из них.

В первую очередь нужно определиться с удельной массой дерева, кирпича и бетона. Известно, что 1 м3 дерева весит 500 кг, кирпича – 1700 кг, а бетона – 2300 кг. Если мы берем стенку, толщина которой составляет 35 см, то путем нехитрых расчетов получим, что удельная масса 1 кв.

м дерева составит 175 кг, кирпича – 595 кг, а бетона – 805 кг. Далее выберем значение температуры, при которой будет происходить накопление тепловой энергии в стенах. Например, это будет происходить в жаркий летний день с температурой воздуха 270С.

Для выбранных условий рассчитываем теплоемкость выбранных материалов:

  1.  Стена из дерева: С=СудхmудхΔТ; Сдер=2,3х175х27=10867,5 (кДж);
  2.  Стена из бетона: С=СудхmудхΔТ; Сбет=0,84х805х27= 18257,4 (кДж);
  3.  Стена из кирпича: С=СудхmудхΔТ; Скирп=0,88х595х27= 14137,2 (кДж).

Из произведенных расчетов видно, что при одинаковой толщине стены наибольшим показателем теплоемкости обладает бетон, а наименьшим – дерево. О чем это говорит? Это говорит о том, что в жаркий летний день максимальное количество тепла будет накапливаться в доме, выполненном из бетона, а наименьшее – из дерева.

Этим объясняет тот факт, что в деревянном доме в жаркую погоду прохладно, а в холодную погоду тепло. Кирпич и бетон легко накапливают в себе достаточно большое количество тепла из окружающей среды, но так же легко и расстаются с ним.

Теплоемкость и теплопроводность материалов

Теплопроводность – это физическая величина материалов, описывающая способность проникновения температуры с одной поверхности стены на другую.

Для создания комфортных условий в помещении необходимо, чтобы стены обладали высоким показателем теплоемкости и низким коэффициентом теплопроводности. В этом случае стены дома будут в состоянии накапливать тепловую энергию окружающей среды, но при этом препятствовать проникновению теплового излучения внутрь помещения.

Уравнение Майера — какие процессы описывает

Уравнение Майера описывает соотношение теплоемкостей 1 моля идеального газа при его постоянном давлении \(C_p\) и неизменном объеме \(C_V:\)

\(C_p-C_v=R,\) где

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут

\(C_p\)— постоянное давление газа;

\(C_V\) — постоянный объем газа;

R — универсальная газовая постоянная, равная:

R = 8,314 \(Дж/(моль*Л).\)

Идеальный газ состоит из молекул, взаимодействие между которыми пренебрежимо мало.

Моль — величина, описывающая количество вещества, которое содержит в себе количество частиц, равное постоянной Авогадро \(Na\):

\(Na = 6,022\cdot10^{23}\;моль^{-1}\)

Понятие теплоемкости

Теплоемкость С — количество тепла, которое нужно передать телу, чтобы повысить его температуру на 1 градус:

\(С=d’Q/dT\), где 

С — удельная теплоемкость;

d’Q — теплота;

dT — температура, .

Величина С зависит от процесса, и без него данная формула не имеет смысла. То есть она является функцией.

Теплоемкость называется удельной, когда в системе используется тело с массой в 1 кг.

В зависимости от количественной единицы вещества теплоемкость делится на три вида:

  1. Мольная — \(C_\mu\), [Дж/кмоль·К].
  2. Массовая — С, [Дж/кг·К].
  3. Объемная — С´, [Дж/м3·К].

Величина С зависит от температуры линейно и нелинейно.

В простейших инженерных расчетах может приниматься либо постоянная зависимость теплоемкости от температуры, либо принимают, что теплоемкость не меняется с ее изменением. Тогда ее не учитывают, но расчет получается приблизительным.

В варианте с линейной зависимостью с возрастанием температуры возрастает и величина С.

С возрастанием температуры необходимо больше подводить теплоты к газу, чтобы повысить температуру и теплоемкость на равный интервал. Теплота \(q_2\) будет больше, чем теплота \(q_1.\)

В данном интервале температур \(t_1-t_2, t_3-t_4,t_n-t_{n+1}\) рассчитывают среднюю теплоемкость:

\(\overline C=\frac{q_1}{t_2-t_1}=\frac{q_2}{t_4-t_3}\), где

\(\overline C\) — средняя теплоемкость, рассчитанная для интервала температур.

Формула для расчета линейной зависимости теплоемкости от температуры:

 C=a+b·t,

где a, b — постоянные коэффициенты для конкретного газа,

t — данная температура для газа. Разным температурам соответствуют свои коэффициенты.

Для высчитывания средней теплоемкости при изменении температур от \(t_1\) до \(t_2\) (например, от 100⁰С до 160⁰С), пользуются соотношением:

\( \overline C=a+b\frac{t_1+t_2}2.\)

Постоянные коэффициенты для конкретных газов в известных условиях приведены в справочных таблицах.

При нелинейной зависимости теплоемкость и температура могут возрастать различными интервалами. Для расчета нелинейной зависимости С от t применяют формулу:

\( \overline{C_{t_1}^{t_2}}=\frac{C_0^{t_2}\cdot t_2-C_0^{t_1}\cdot t_1}{t_2-t_1}\)

\( C_0\) — начальные теплоемкости при некой температуре. Их можно найти в справочных таблицах «Средняя объемная теплоемкость газов при постоянном давлении».

Инструкция по расчёту параметра

Рассчитать с вещества достаточно просто и чтобы это сделать нужно, выполнить следующие шаги:

  1. Взять расчётную формулу: Теплоемкость = Q/(m*∆T)
  2. Выписать исходные данные.
  3. Подставить их в формулу.
  4. Провести расчёт и получим результат.

В качестве примера произведём расчёт неизвестного вещества массой 480 грамм обладающего температурой 15ºC, которая в результате нагрева (подвода 35 тыс. Дж) увеличилась до 250º.

Согласно инструкции приведённой выше производим следующие действия:

Выписываем исходные данные:

  • Q = 35 тыс. Дж;
  • m = 480 г;
  • ΔT = t2–t1 =250–15 = 235 ºC.

Берём формулу, подставляем значения и решаем:

с=Q/(m*∆T)=35тыс.Дж/(480 г*235º)=35тыс.Дж/(112800 г*º)=0,31 Дж/г*º.

Примечания и ссылки

Заметки

  1. Удельный и массовый термины эквивалентны.
  2. МБЫ не ставят килограмм и Кельвин в том же порядке , для символа как для имени узла (он записывает «джоуль на килограмм кельвин» , но «  Й К -1  кг -1  »), не давая д ‘объяснение . Он делает то же самое для молярной теплоемкости  : «джоуль на моль кельвин», но «  Дж  · К -1 моль -1
  3. Массовый объем — величина, обратная плотности .
  4. ↑ и R = 8.314 4  Дж  · К −1 моль −1 .

Рекомендации

  1. .
  2. Мишель Лагьер, Физика промышленных жидкостей: фундаментальные концепции и численные приложения , Technip,1996 г. , стр.  274.
  3. BIPM , Международная система единиц измерения ,2019 г., 9- е  изд. , 218  с. , с.  28 год.
  4. .
  5. Эжен Пекле , Трактат о тепле, рассмотренный в его приложениях , Д. Аванцо и Се,1844 г., 420  с. , стр.  17Указанные значения даны в кал. Кг -1 ·  K -1 .
  6. ↑ и «Энергия древесины», Технические технологии , 10 июля 2004 г., исх. BE 8535.
  7. (in) в Национальном институте стандартов и технологий (по состоянию на 5 мая 2021 г. ) , «  Теплоемкость жидкости при постоянном давлении  » .

Определение

Удельная теплоемкость вещества, обычно обозначаемая как c{ displaystyle c}, — теплоемкость C{ displaystyle C} образца вещества, деленного на массу M{ displaystyle M} образца:

c=CM=1M⋅dQdТ{ displaystyle c = { frac {C} {M}} = { frac {1} {M}} cdot { frac { mathrm {d} Q} { mathrm {d} T}}}

куда dQ{ displaystyle mathrm {d} Q} представляет количество тепла, необходимое для равномерного повышения температуры образца с небольшим шагом dТ{ displaystyle mathrm {d} T}.

Как и теплоемкость объекта, удельная теплоемкость вещества может варьироваться, иногда существенно, в зависимости от начальной температуры. Т{ displaystyle T} образца и давление п{ displaystyle p} применяется к нему. Следовательно, ее следует рассматривать как функцию c(п,Т){ displaystyle c (p, T)} этих двух переменных.

Эти параметры обычно указываются при указании удельной теплоемкости вещества. Например, «Вода (жидкость): cп{ displaystyle c_ {p}} = 4185,5 Дж / К / кг (15 ° C, 101,325 кПа) » Если не указано иное, опубликованные значения удельной теплоемкости c{ displaystyle c} как правило, действительны для некоторых стандартные условия по температуре и давлению.

Однако зависимость c{ displaystyle c} на начальную температуру и давление часто можно игнорировать в практических контекстах, например при работе в узких диапазонах этих переменных. В этих контекстах обычно опускают квалификатор (п,Т){ displaystyle (p, T)}, и аппроксимирует теплоемкость константой c{ displaystyle c} подходит для этих диапазонов.

Удельная теплоемкость — это интенсивное свойство вещества, внутренняя характеристика, которая не зависит от размера или формы рассматриваемого количества. (Квалификатор «специфический» перед экстенсивным свойством часто указывает на интенсивное свойство, производное от него.)

Вариации

Введение тепловой энергии в вещество, помимо повышения его температуры, обычно вызывает увеличение его объема и / или давления, в зависимости от того, как удерживается образец. Выбор последнего влияет на измеренную удельную теплоемкость даже при том же начальном давлении. п{ displaystyle p} и начальная температура Т{ displaystyle T}. Широко используются два конкретных варианта:

  • Если давление поддерживается постоянным (например, при атмосферном давлении окружающей среды), а образец расширяется, расширение вызывает работай поскольку сила давления смещает корпус или окружающую жидкость. Эта работа должна производиться за счет поставляемой тепловой энергии. Полученная таким образом удельная теплоемкость называется измеренной. при постоянном давлении (или же изобарический), и часто обозначается cп{ displaystyle c_ {p}}, cп{ displaystyle c _ { mathrm {p}}}, так далее.
  • С другой стороны, если расширение предотвращается — например, за счет достаточно жесткого корпуса или увеличения внешнего давления, чтобы противодействовать внутреннему, — работа не создается, и тепловая энергия, которая пошла бы в него, должна вместо этого способствовать внутренняя энергия образца, в том числе повышение его температуры на дополнительную величину. Полученная таким образом удельная теплоемкость называется измеренной. при постоянной громкости (или же изохорный) и обозначили cV{ displaystyle c_ {V}}, cv{ displaystyle c_ {v}} cv{ displaystyle c _ { mathrm {v}}}, так далее.

Значение cV{ displaystyle c_ {V}} обычно меньше, чем значение cп{ displaystyle c_ {p}}. Эта разница особенно заметна для газов, где значения при постоянном давлении обычно на 30–66,7% больше, чем при постоянном объеме. Следовательно коэффициент теплоемкости газов обычно составляет от 1,3 до 1,67.

Применимость

Удельную теплоемкость можно определить и измерить для газов, жидкостей и твердых тел довольно общего состава и молекулярной структуры. К ним относятся газовые смеси, растворы и сплавы или гетерогенные материалы, такие как молоко, песок, гранит и бетон, если рассматривать их в достаточно большом масштабе.

Удельная теплоемкость также может быть определена для материалов, которые изменяют состояние или состав при изменении температуры и давления, если изменения обратимы и постепенны. Таким образом, например, концепции могут быть определены для газа или жидкости, которые диссоциируют при повышении температуры, до тех пор, пока продукты диссоциации быстро и полностью рекомбинируют при падении.

Удельная теплоемкость не имеет значения, если вещество претерпевает необратимые химические изменения или если есть изменение фазы, например, плавление или кипение при резкой температуре в диапазоне температур, охватываемых измерением.

Теплоемкости удельные твердых веществ, жидкостей и газов (газов — при постоянном давлении 1 бар абс) + справочные плотности.

Твердые вещества. Удельная теплоемкость при 20 °C (если не указано другое).

Теплоемкости удельные твердых веществ, жидкостей и газов (газов — при постоянном давлении 1 бар абс) + справочные плотности.
Вещество Плотность, 10 3 кг/м 3 Удельная теплоемкость,
кДж / (кг · К), при 20 oС
Асбест 2,4 0,8
Асбоцемент 1,8 0,96
Асфальт 1,4 0,92
Алюминий 2,7 0,92
Базальт 3,0 0,84
Бакелит 1,26-1,28 1,59
Бетон практическая 1,8-2,2 (до 2,7) 1,00
Бумага сухая 1,34
Вольфрам 19,3 0,15
Гипс 2,3 1,09
Глина 2,3-2,4 0,88
Гранит 2,7 0,75
Графит 2,3 0,84
Грунт песчаный 1,5-2,0 1,10-3,32
Дерево (дуб) 0,7 2,40
Дерево (пихта) 0,5 2,70

Дерево (сосна)

0 ,5 2,70
ДСП 0,7 2,30
Железо 7,8 0,46
Земля влажная 1,9-2,0 2,0
Земля сухая 1,4-1,6 0,84
Земля утрамбованная 1,6-2 1,0-3,0
Зола 0,75 0,80
Золото 19,3 0,13
Известь 0,4-0,7 0,84
Кальцит (известковый шпат) 2,75 0,80
Камень 1,8-3 0,84-1,26
Каолин (белая глина) 2,6 0,88
Картон сухой 1,34
Кварц 0,75
Кирпич 1,8 0,85
Кирпичная кладка 1,8-2,2 0,84-1,26
Кожа 2,65 1,51
Кокс (0-100°С) истинная 1,80-1,95 (кажущаяся 1,0) 0,84
Кокс (100-1000°С) = 1,13
Лед (0°С) 0,92 2,11
Лед (-10°С) = 2,22
Лед (-20°С) = 2,01
Лед (-60°С) = 1,64
Лед сухой (СО2 твердый) 1,97 1,38
Латунь 8,5 0,38
Медь 8,9 0,38
Мрамор 2,7 0,92
Никель 8,9 0,5
Олово 7,3 0,25
Парафин 0,9 2,89
Песчаник глиноизвестняковый 2,2-2,7 0,96
Песчаник керамический = 0,75-0,84
Песчаник красный = 0,71
Полиэтилен 0,90-0,97 2,0-2,3
Полистирол 1,05 1,38
Полиуретан 1,1-1,2 1,38
Полихлорвинил/Поливинилхлорид 0,7-0,8 1,00
Пробка крошка <0,2 1,38
Пробка куском 0,24 2,05
Резина твердая 0,9-1,3 1,42
Свинец 1,4 0,13
Сера ромбическая 2,07 0,71
Серебро 10,5 0,25
Соль каменная 2,3 0,92
Соль поваренная 2,2 0,88
Сталь 7,8 0,46
Стекло оконное 2,5 0,67
Стекловолокно 0,81
Тело человека 1,05 3,47
Уголь бурый (0-100 °С) 1-1,8

20% воды 2,09

60% воды 3,14

в брикетах 1,51

Уголь каменный (0-100 °С) 1,3-1,6 1,17-1,26
Фарфор 2,3 0,8
Хлопок 1,3
Целлюлоза 1,55
Цемент 3,1 (Насыпная =1,2) 0,8
Цинк 7,1 0,4
Чугун 7,4 0,54
Шерсть 1,8
Шифер 1,6-1,8 0,75
Щебень Насыпная 1,2-1,8 0,75-1,00

Жидкости. Удельная теплоемкость при 20 °C (если не указано другое).

Вещество Плотность, 10 3 кг / м 3 Удельная теплоемкость
при 20 oС, кДж / (кг · К)
Ацетон 0,79 2,160
Бензин 0,70 2,05
Бензол (10 °C) 0,90 1,42
Бензол (40 °C) 0,88 1,77
Вода 1 ,00 4,18-4,22
Вино 0,97 3,89
Глицерин 1,26 2,66
Гудрон 0,99 2,09
Деготь каменноугольный 0,92-0,96 2,09
Керосин 0,8-0,9 1,88-2,14

Кислота азотная концентрированая

1,52 3,10
Кислота серная концентрированая 1,83 1,34
Кислота соляная 17% 1,07 1,93
Клей столярный 1-1,5 4,19
Масло моторное 0,90 1,67-2,01
Масло оливкковое 0,89 1,84
Масло подсолнечное 0,89 1,84

Морская вода 18°С , 0,5% раствор соли

1,01 4,10
Морская вода 18°С , 3% раствор соли 1,03 3,93
Морская вода 18°С , 6% раствор соли 1,05 3,78
Молоко 1,02 3,93
Нефть 0,80 1,67-2,09
Пиво 1,01 3,85
Ртуть 13,60 0,13
Скипидар 0,86 1,80
Спирт метиловый (метанол) 0,79 2,47
Сприрт нашатырный <1 4,73
Спирт этиловый (этанол) 0,79 2,39
Толуол 1,72
Хлороформ 1,00
Этиленгликоль 2,30

Газы. Удельная теплоемкость при постоянном давлении 1 бар абс,
при 20 °C (если не указано другое).

Вещество Химическая формула Плотность при нормальных условиях кг/м 3
= масса 1л в граммах
Удельная теплоемкость
при постоянном давлении, КДж/(кг*K)
Азот N2 1,25 1,05
Аммиак NH3 1,25 2,24
Аргон Ar 1,78 0,52
Ацетилен C2H2 1,17 1,68
Ацетон C3H6O 2,58
Водород H2 0,09 14,26
Водяной пар H2O 0,59 (при 100 °С) 2,14 (при 100 °С)
Воздух 1,29 1
Гелий He 0,18 5,29
Кислород O2 1,43 0,91
Неон Ne 0,90 1,03
Озон O3 2,14
Пропан C3H8 1,98 1,86
Сероводород H2S 1,54 1,02
Спирт этиловый C2H6O 2,05
Углекислый газ CO2 1,98 ≈1
Хлор Cl2 3,16 0,52

Удельная теплоемкость воды

Международный Комитет Мер и Весов принял в 1950 г. предложенные В. Дж. де Хаасом значения: cv = (15° С) = 4,1855дж/г · град С (соответствует значению, данному Бэрджем в 1941 г.); отсюда для ср(t °C) получается следующая формула:

Эта формула была дана Осборном, Стимсоном и Гиннингсом.

Во всех последующих таблицах значения с даны в единицах дж/г · град · С

Температура, °С 1 2 3 4 5 6 7 8 9
4,2174 4,2138 4,2104 4,2074 4,2045 4,2019 4,1996 4,1974 4,1954 4,1936
10 4,1919 4,1904 4,1890 4,1877 4,1866 4,1855 4,1846 4,1837 4,1829 4,1822
20 4,1816 4,1810 4,1805 4,1801 4,1797 4,1793 4,1790 4,1787 4,1785 4,1783
30 4,1782 4,1781 4,1780 4,1780 4,1779 4,1779 4,1780 4,1780 4,1781 4,1782
40 4,1783 4,1784 4,1786 4,1788 4,1789 4,1792 4,1794 4,1796 4,1799 4,1801
50 4,1804 4,1807 4,1811 4,1814 4,1817 4,1821 4,1825 4,1829 4,1833 4,1837
60 4,1841 4,1846 4,1850 4,1855 4,1860 4,1865 4,1871 4,1876 4,1882 4,1887
70 4,1893 4,1899 4,1905 4,1912 4,1918 4,1925 4,1932 4,1939 4,1946 4,1954
80 4,1961 4,1969 4,1977 4,1985 4,1994 4,2002 4,2011 4,2020 4,2029 4,2039
90 4,2048 4,2058 4,2068 4,2078 4,2089 4,2100 4,2111 4,2122 4,2133 4,2145

Внутренняя энергия газа

Внутренняя энергия любой системы — это физическая характеристика, которая равна сумме потенциальной и кинетической энергии. Поскольку в идеальных газах можно пренебречь потенциальной энергией, то для них можно записать равенство:

Где Ek — энергия кинетическая системы. Используя молекулярно-кинетическую теорию и применяя универсальное уравнение состояния Клапейрона-Менделеева, несложно получить выражение для U. Оно записано ниже:

Здесь T, R и n — абсолютная температура, газовая постоянная и количество вещества соответственно. Величина z — это целое число, показывающее количество степеней свободы, которыми обладает молекула газа.

Удельная теплоёмкость

удельная теплоёмкость, удельная теплоёмкость 8 классУде́льная теплоёмкость — отношение теплоёмкости к массе, теплоёмкость единичной массы вещества (разная для различных веществ); физическая величина, численно равная количеству теплоты, которое необходимо передать единичной массе данного вещества для того, чтобы его температура изменилась на единицу.

В Международной системе единиц (СИ) удельная теплоёмкость измеряется в джоулях на килограмм на кельвин, Дж/(кг·К). Иногда используются и внесистемные единицы: калория/(кг·К) и т.д.

Удельная теплоёмкость обычно обозначается буквами c или С, часто с индексами.

На значение удельной теплоёмкости влияет температура вещества и другие термодинамические параметры. К примеру, измерение удельной теплоёмкости воды даст разные результаты при 20 °C и 60 °C.

Кроме того, удельная теплоёмкость зависит от того, каким образом позволено изменяться термодинамическим параметрам вещества (давлению, объёму и т. д.

); например, удельная теплоёмкость при постоянном давлении (CP) и при постоянном объёме (CV), вообще говоря, различны.

Формула расчёта удельной теплоёмкости: где c — удельная теплоёмкость, Q — количество теплоты, полученное веществом при нагреве (или выделившееся при охлаждении), m — масса нагреваемого (охлаждающегося) вещества, ΔT — разность конечной и начальной температур вещества. Удельная теплоёмкость может зависеть (и в принципе, строго говоря, всегда — более или менее сильно — зависит) от температуры, поэтому более корректной является следующая формула с малыми (формально бесконечно малыми) и :

  • 1 Значения удельной теплоёмкости некоторых веществ
  • 2 См. также
  • 3 Примечания
  • 4 Литература
  • 5 Ссылки

Значения удельной теплоёмкости некоторых веществ

воздух (сухой) газ 1,005
воздух (100 % влажность) газ 1,0301
алюминий твёрдое тело 0,903
бериллий твёрдое тело 1,8245
латунь твёрдое тело 0,377
олово твёрдое тело 0,218
медь твёрдое тело 0,385
молибден твёрдое тело 0,250
сталь твёрдое тело 0,462
алмаз твёрдое тело 0,502
этанол жидкость 2,460
золото твёрдое тело 0,129
графит твёрдое тело 0,720
гелий газ 5,190
водород газ 14,300
железо твёрдое тело 0,444
свинец твёрдое тело 0,130
чугун твёрдое тело 0,540
вольфрам твёрдое тело 0,134
литий твёрдое тело 3,582
ртуть жидкость 0,139
азот газ 1,042
нефтяные масла жидкость 1,67 — 2,01
кислород газ 0,920
кварцевое стекло твёрдое тело 0,703
вода 373 К (100 °C) газ 2,020
вода жидкость 4,187
лёд твёрдое тело 2,060
сусло пивное жидкость 3,927
асфальт 0,92
полнотелый кирпич 0,84
силикатный кирпич 1,00
бетон 0,88
кронглас (стекло) 0,67
флинт (стекло) 0,503
оконное стекло 0,84
гранит 0,790
талькохлорит 0,98
гипс 1,09
мрамор, слюда 0,880
песок 0,835
сталь 0,47
почва 0,80
древесина 1,7

См. также

  • Теплоёмкость
  • Объёмная теплоёмкость
  • Молярная теплоёмкость
  • Скрытая теплота
  • Теплоёмкость идеального газа
  • Удельная теплота парообразования и конденсации
  • Удельная теплота плавления

Примечания

  1. Для неоднородного (по химическому составу) образца удельная теплоемкость является дифференциальной характеристикой , меняющейся от точки к точке.

    Зависит она в принципе и от температуры (хотя во многих случаях изменяется достаточно слабо при достаточно больших изменениях температуры), при этом строго говоря определяется — вслед за теплоёмкостью — как дифференциальная величина и по температурной оси, т.е.

    строго говоря следует рассматривать изменение температуры в определении удельной теплоёмкости не на один градус (тем более не на какую-то более крупную единицу температуры), а на малое с соответствующим количеством переданной теплоты . (См. далее основной текст).

  2. Кельвины (К) здесь можно заменять на градусы Цельсия (°C), поскольку эти температурные шкалы (абсолютная и шкала Цельсия) отличаются друг от друга лишь начальной точкой, но не величиной единицы измерения.

Ссылки

  • Таблицы физических величин. Справочник, под ред. И. К. Кикоина, М., 1976.
  • Сивухин Д. В. Общий курс физики. — Т. II. Термодинамика и молекулярная физика.
  • E. М. Лифшиц Теплоёмкость // под. ред. А. М. Прохорова Физическая энциклопедия. — М.: «Советская энциклопедия», 1998. — Т. 2.

Физические свойства металла

Алюминий — это химический элемент (атомный № 13) Он принадлежит к группе легких металлов и является распространенным элементом, находящимся в земной коре. Парамагнитный металл обладает серебристо-белым цветом, он очень легко поддается механической обработке, из него удобно отливать изделия. Металл обладает высокой тепло- и электропроводностью. Он устойчив к воздействию воздуха за счет способности формирования пленок из оксида металла, защищающих поверхность от влияния внешней среды.

Разрушается пленка под воздействием щелочных растворов. Для предотвращения реакции металла с агрессивными жидкостями в сплав добавляют индий, олово или галлий.

Удельная теплота плавления составляет 390 кДж/кг, а испарения – 10,53 МДж/кг. Металл кипит при температуре 2500°C. Градиент плавления зависит от степени очистки материала и составляет соответственно:

  • для технического сырья +658°C;
  • для металла с очисткой высшего класса +660 °C.

Алюминий легко формирует сплавы, среди которых всем известны соединения с медью, магнием, кремнием. В ювелирной отрасли этот металл сочетают с золотом, что придает составу новые физические свойства.


Алюминий легко образует сплавы.

В природе химический элемент образует естественные соединения. Он находится в составе таких минералов, как:

  • нефелин;
  • боксит;
  • корунд;
  • полевой шпат;
  • каолинит;
  • берилл;
  • изумруд;
  • хризоберилл.

В некоторых местах (жерла вулканов) можно обнаружить в незначительных количествах самородный металл.

Термохимия

Все химические
реакции сопровождаются тепловыми
эффектами. Более того, при некоторых
фиксированных условиях протекания эти
эффекты являются характеристическими
величинами. Так, например, как было
показано выше, при протекании изохорической
химической реакции вся подводимая и
отводимая от системы теплота ведет к
изменению внутренней энергии системы,
абсолютную величину которой оценить
нельзя, но определение ее изменения в
процессе химической реакции вполне
возможно. При протекании процессов при
постоянном давлении, подводимая к
системе или отводимая теплота равна
изменению ее энтальпии. При этом H
и U
равны только при сугубо частных условиях.

Кроме того,
абсолютные величины тепловых эффектов
химических реакций (поглощение или
отвод от системы теплоты в процессе их
протекания) являются функциями
температуры. И только в весьма узких
температурных интервалах они могут
быть приняты, в первом приближении, как
постоянные.

В связи со сказанным
необходимо стандартизовать условия
протекания химических процессов, то
есть договориться об условиях, при
которых вещества находятся в стандартном
состоянии. За стандартные приняты
следующие условия:

температура 298 К
или 25 С;

давление газа
1,035 
105
Па;

жидкости в
стандартном состоянии находятся при
том же давлении (или 1 атм).

Если при протекании
реакций происходит выделение теплоты,
то изменение энтальпии (H)
отрицательно. Такие процессы называются
экзотермическими (H

А + В 
С – H

В обратном случае
(поглощение теплоты) H
положительно, а реакции называются
эндотермическими (H
> 0).

А + В 
С + H

Нолик, если он
приводится, в верхнем индексе H
указывает на стандартное состояние
всех участников реакции. Представленная
выше условная система получила название
термодинамической. В научной практике
все термодинамические константы в
справочниках приводятся при стандартных
условиях.

Для различных
соединений характерны свои теплоты
образования. Под теплотой (энтальпией)
образования понимают количество теплоты,
которое выделяется или поглощается при
образовании 1 моля i-того
вещества при рассматриваемых (в
справочниках – стандартных) условиях
из простых, термодинамически устойчивых
веществ.

При стандартных
условиях их принято обозначать H,
где f
— formation.
Для ряда процессов они приведены ниже.

С + 1/2О2
= СО; H
= 113,8
кДж/моль

1/2Cl2(г)

; H
= 121,3 кДж/моль

1/2Cl2
+ е 
Cl; H
= 233,6
кДж/моль

1/2Cl2
+ е + aq

Cl; H
= 167,1
кДж/моль

C
+ 2H2

CH4(г);
H
= 74,8
кДж/моль

6C
+ 3H2

C6H6(г);
H
= 82,93 кДж/моль

5C
+ 6H2

C5H12(г);
(н-пентан) H
= 173,3 кДж/моль

Теплоты образования
простых веществ, термодинамически
стабильных, при стандартных условиях
приняты условно равными нулю.

Так, HО2(г)
= 0; HН2(г)
= 0.

Кроме того, теплоты
образования вещества зависят от его
агрегатного состояния.

HН2О(кр)
= 291,8
кДж/моль;

HН2О(ж)
= 285,8
кДж/моль;

HН2О(г)
= 187,9
кДж/моль.

В химической
термодинамике широко используется
понятие теплоты сгорания. Под теплотой
сгорания вещества понимают то количество
теплоты, которое выделяется при полном
сгорании
одного моля вещества до высших
оксидов при данных условиях, учитывающих
давление и температуру. Сгорание следует
считать полным, когда C,
H,
N,
S,
Cl,
входящих в состав химических веществ,
превращаются соответственно в СО2,
Н2О(ж),
N2,
SO2
и HCl.

Под стандартной
теплотой сгорания понимают H
реакции, когда исходные вещества и
продукты сгорания до высших оксидов
находятся в стандартном состоянии.

Таким образом,
стандартные теплоты образования и
сгорания веществ, в том числе и органических
можно считать их характеристическими
константами.

Удельная теплоемкость вещества

Рассмотрим на примерах, как удельная теплоемкость характеризует вещество.

Возьмем $1 \space кг$ воды и нагреем его на $1 \degree C$ (рисунок 1). 

Рисунок 1. Определение удельной теплоемкости воды.

Для этого нам понадобится $4200 \space Дж$. Именно это количество теплоты и будет определять удельную теплоемкость воды.

А теперь нагреем на $1 \degree C$ кусок свинца массой $1 \space кг$ (рисунок 2).

Рисунок 2. Определение удельной теплоемкости свинца.

В этот раз нам потребуется затратить $140 \space Дж$. Это значение ожидаемо отличается от количества теплоты, затраченное на нагревание воды. Тем не менее, это количество теплоты так же будет характеризовать удельную теплоемкость свинца.

{"questions":,"answer":}},"hints":[]}]}

Физическая основа теплоемкости

Температура образца вещества отражает среднее значение кинетическая энергия составляющих его частиц (атомов или молекул) относительно его центра масс. Однако не вся энергия, передаваемая образцу вещества, идет на повышение его температуры, примером чего является теорема о равнораспределении.

Одноатомные газы

Квантовая механика предсказывает, что при комнатной температуре и обычном давлении изолированный атом в газе не может хранить какое-либо значительное количество энергии, кроме как в форме кинетической энергии. Таким образом, теплоемкость на моль одинаково для всех одноатомных газов (например, благородных газов). Точнее, cV,м=3р2≈{ Displaystyle c_ {V, mathrm {m}} = 3R / 2 приблизительно {}}12,5 Дж / К / моль и cп,м=5р2≈{ Displaystyle c_ {P, mathrm {m}} = 5R / 2 приблизительно {}}21 Дж / К / моль, где р≈{ Displaystyle R приблизительно {}}8,31446 Дж / К / моль — это установка идеального газа (который является продуктом Постоянная преобразования Больцмана из кельвин микроскопическая единица энергии к макроскопической единице энергии джоуль, и Число Авогадро ).

Следовательно, удельная теплоемкость (на единицу массы, а не на моль) одноатомного газа будет обратно пропорциональна его (размерной) атомный вес А{ displaystyle A}. То есть примерно

cV≈{ displaystyle c_ {V} приблизительно {}}12470 Дж / К / кгАcп≈{ displaystyle / A quad quad quad c_ {p} приблизительно {}}20785 Дж / К / кгА{ displaystyle / A}

Для благородных газов, от гелия до ксенона, эти расчетные значения равны

Газ Он Ne Ar Kr Xe
А{ displaystyle A} 4.00 20.17 39.95 83.80 131.29
cV{ displaystyle c_ {V}} (Дж / К / м3) 3118 618.3 312.2 148.8 94.99
cп{ displaystyle c_ {p}} (Дж / К / кг) 5197 1031 520.3 248.0 158.3

Многоатомные газы

С другой стороны, многоатомная молекула газа (состоящая из двух или более связанных вместе атомов) может накапливать тепловую энергию в других формах, помимо своей кинетической энергии. Эти формы включают вращение молекулы и колебание атомов относительно ее центра масс.

Эти дополнительные степени свободы или «режимы» вносят вклад в удельную теплоемкость вещества. А именно, когда в газ с многоатомными молекулами вводится тепловая энергия, только часть ее идет на увеличение их кинетической энергии и, следовательно, температуры; остальное перейдет в те другие степени свободы. Чтобы достичь такого же повышения температуры, моль этого вещества должен быть передан большей тепловой энергии, чем моль одноатомного газа. Следовательно, теплоемкость многоатомного газа зависит не только от его молекулярной массы, но и от числа степеней свободы, которые имеют молекулы.

Квантовая механика далее утверждает, что каждая вращательная или колебательная мода может забирать или терять энергию только в определенном дискретном количестве (квантах). В зависимости от температуры, средняя тепловая энергия на молекулу может быть слишком маленькой по сравнению с квантами, необходимыми для активации некоторых из этих степеней свободы. Эти режимы называются «замороженными». В этом случае удельная теплоемкость вещества будет увеличиваться с температурой, иногда ступенчато, по мере того, как больше режимов размораживаются и начинают поглощать часть подводимой тепловой энергии.

Например, молярная теплоемкость азот N2 при постоянной громкости cV,м={ displaystyle c_ {V, mathrm {m}} = {}} 20,6 Дж / К / моль (при 15 ° C, 1 атм), что составляет 2,49р{ displaystyle R}. Это значение, ожидаемое из теории, если каждая молекула имеет 5 степеней свободы. Оказывается, это три градуса вектора скорости молекулы плюс два градуса ее вращения вокруг оси, проходящей через центр масс и перпендикулярной линии двух атомов. Из-за этих двух дополнительных степеней свободы удельная теплоемкость cV{ displaystyle c_ {V}} из N2 (736 Дж / К / кг) в 5/3 раза больше, чем у гипотетического одноатомного газа с той же молекулярной массой 28 (445 Дж / К / кг).

Это значение удельной теплоемкости азота практически постоянно от -150 ° C до примерно 300 ° C. В этом температурном диапазоне две дополнительные степени свободы, соответствующие колебаниям атомов, растяжению и сжатию связи, все еще «заморожены». Примерно при этой температуре эти режимы начинают «размораживаться», и в результате cV{ displaystyle c_ {V}} сначала начинает быстро увеличиваться, затем медленнее по мере приближения к другому постоянному значению. Оно составляет 35,5 Дж / К / моль при 1500 ° C, 36,9 при 2500 ° C и 37,5 при 3500 ° C. Последнее значение почти точно соответствует предсказанному значению для 7 степеней свободы на молекулу.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *